
Searching Methods

Institute of Lifelong Learning, University of Delhi 1

Paper Name: Data Struture

Lesson: Searching Methods

Lesson Developer: Vandana Kalra

College/ Department: Shri Guru Gobind Singh College,
University of Delhi

Searching Methods

Institute of Lifelong Learning, University of Delhi 2

Table of Contents

 1 Searching Techniques

 1.1 Introduction

 1.2 Linear Search

 1.2.1 Iterative Version

 1.2.2 Recursive Version

 1.2.3 Reverse order Linear search

 1.2.4 Complexity of Linear search

 1.2.5 Ordered List Linear search

 1.3 Binary Search

 1.3.1 Iterative version

 1.3.2 Recursive version

 1.3.3 Complexity of Binary search

 1.4: Skip List

 1.4.1 Concept

 1.4.2 A probabilistic Skip List

 1.4.3 Searching in Skip List

 1.4.4 Structure of Skip List

 1.4.5 Skip List as multiple Linked List

 1.4.6 Operations on Skip List

 1.4.7 Skip List Running Time

 1.4.8 Application of Skip List

 Summary

 Exercises

 Glossary

 References

Searching Methods

Institute of Lifelong Learning, University of Delhi 3

1 Searching Techniques

In Computer Science, We are required to deal with voluminous data. Data has to be

stored using some data structure. We have to access data from data store using

some methods. To find the particular data from the store, we have to search it. To

search an element we need certain searching techniques. So, It is very important to

search data in computer science.

1.1 Introduction

Speed of searching an element is important in many applications. It depends upon

many factors. Depending upon the position of the data accessed, time taken to

search a data is large or small. Since searching is often used in various important

concepts, we have to find and compare different methods so that time taken to

search a data should be minimum.

To understand the importance of searching techniques, let us take the real life

example. In a bank application, many customer accounts are there. Given the

account number, to find the balance in an account requires to search a account

number in a large customer list. Similarly, search of phone number according to

name from the telephone directory.

Fig 1.1 Searching Problem

Source:http://www.gracerecruit.com/images/resume_sourcing.png

Value addition: Conceptual Notations

Searching Methods

Institute of Lifelong Learning, University of Delhi 4

What are Internal and External searching?

Source: Data Structures and Program Design in C++ - Robert L. Kruse

Searching Methods

Institute of Lifelong Learning, University of Delhi 5

 1.2 Linear Search

Now ,let us start with a simple searching method known as Linear search. Linear

search, also known as sequential search, means starting from the beginning of the

data stored in any data structure and checking each item in turn until either the

desired item is found or end of the data is reached. A good example of this search is

to find the record of the patient from the pile of patient files. One by one the name of

patient is checked on the files till the end or until the name is matched with the

particular patient.

Let us take the unordered list of patient records having name and age as follows:

Gautam, 23

Amit, 12

Sidharth, 45

Rita, 67

Manav, 55

Sagar, 87

Neena, 92

To search whether a record of patient Sagar is in the list or not , we compare the

name Sagar with the first name Gautam .As it does not match ,we move to second

element of list i.e Amit. It is again not matched with Sagar. Proceeding on, we

compare Sagar with all names till Sagar is found in the list . Then record this position

where this name is found. Linear search can be done using arrays as well as any

Linked List. Here we discuss the linear search using arrays.

1.2.1 Iterative Version

The following is a pseudocode for simple iterative version of Linear search where if

the data is found in the list, the valid location of data is returned otherwise the

invalid location is returned, indicating that data is not present in the list.

For each item in the list:

 if that item has the desired value,

 stop the search and return the item's location.

 Return invalid location

In this pseudocode, the last line is executed only after all list items have been

examined with none matching.

There may be two different versions of linear search based on data structure of list.

 If the list is stored as an array data structure, the location may be the index

of the item found (usually between 1 and max, or 0 and max−1). In that

case, the invalid location Λ can be any index before the first element (such as

0 or −1, respectively) or after the last one (max+1 or max, respectively).

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Array_index

Searching Methods

Institute of Lifelong Learning, University of Delhi 6

 If the list is a simply linked list, then the item's location is its reference, and
Λ is usually the null pointer.

1.2.2 Recursive Version

Linear search can also be described as a recursive algorithm. The pseudocode for this

recursive algorithm is given as :

 If the list is empty, return invalid position;

 else

 if the first item of the list has the desired value, return its location;

 else search the value in the remainder of the list, and return the result.

1.2.3 Reverse Order Linear Search

Simple Linear search in an array is done by incrementing an index variable until it

reaches the last index of the array. This can be done with the help of two comparison

statements for each list item: one to check whether the index has reached the end of

the array, and another one to check whether the item has the desired value. In many

computers, one can reduce the work of the first comparison by scanning the items in
reverse order.

Suppose an array A with elements indexed 1 to max is to be searched for a value x.

The following pseudocode performs a forward search, returning max + 1 if the

value is not found:

 Set i to 1.

 Repeat this loop:

 If i > max, then exit the loop.

 If A[i] = x, then exit the loop.

 Set i to i + 1.

 Return i.

Value addition: Quick Reference

How Linear search search works?

www.mtsu.edu/~csci117/manual/lab12/lab12.html

http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Reference_(computer_science)
http://en.wikipedia.org/wiki/Null_pointer
http://en.wikipedia.org/wiki/Recursion
http://www.mtsu.edu/~csci117/manual/lab12/lab12.html

Searching Methods

Institute of Lifelong Learning, University of Delhi 7

The following pseudocode searches the array in the reverse order, returning 0 when

the element is not found:

 Set i to max.

 Repeat this loop:

 If i ≤ 0, then exit the loop.

 If A[i] = x, then exit the loop.

 Set i to i − 1.

 Return i.

Most computers have a conditional branch instruction that tests the sign of a value in

a register, or the sign of the result of the most recent arithmetic operation. One can

use that instruction, which is usually faster than a comparison against some arbitrary

value (requiring a subtraction), to implement the command "If i ≤ 0, then exit the

loop".

This optimization is easily implemented when programming in machine or assembly

language. That branch instruction is not directly accessible in typical high-level

programming languages, although many compilers will be able to perform that
optimization on their own.

Value addition: Do you Know

How we can reduce the overhead in Linear Search?

Using a sentinel

One way to reduce the overhead is to eliminate all checking of the loop index. This can be

done by inserting the desired item itself as a sentinel value at the far end of the list, as in
this pseudocode:

 Set A[n + 1] to x.

 Set i to 1.

 Repeat this loop:

 If A[i] = x, then exit the loop.

 Set i to i + 1.

 Return i.

With this stratagem, it is not necessary to check the value of i against the list length n:

even if x was not in A to begin with, the loop will terminate when i = n + 1. However this

method is possible only if the array slot A[n + 1] exists but is not being otherwise used.

Similar arrangements could be made if the array were to be searched in reverse order, and
element A(0) were available.

Although the effort avoided by these ploys is tiny, it is still a significant component of the

overhead of performing each step of the search, which is small. Only if many elements are

likely to be compared will it be worthwhile considering methods that make fewer

comparisons but impose other requirements

http://en.wikipedia.org/wiki/Branch_instruction
http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/High-level_programming_languages
http://en.wikipedia.org/wiki/High-level_programming_languages
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Sentinel_value

Searching Methods

Institute of Lifelong Learning, University of Delhi 8

1.2.4 Complexity of linear searching

The time required for a search operation depends upon complexity of the searching

algorithm. Complexity of the searching method is determined from the number of

comparison performed among the elements in order to find the elements. We have to

consider three cases when we search an element in the list:

Best case: In this case, the element is present at first position, so only one

comparison is required to search an element.

Worst case: In the worst case, element is present at the last position or not present.

If total number of elements in the list are n, then number of comparisons required

for searching an element are n if number is present at the last position. It is n+1 , if

number is not present in the list. It takes more time to search an element in this

case.

Average case: This case appears when the element to be searched lies somewhere

in between the first and the last element. It is more than the best case but less than

the worse case.

As the size of the list increases, time required to search an element in average and

worse cases also increases as depicted in fig 1.2.

The major disadvantages of linear search is

 It is very slow process

 It is used only for small amount of data

Fig 1.2 Graph showing relation between time taken for search and size of List

Source: Wikipedia

Searching Methods

Institute of Lifelong Learning, University of Delhi 9

Source:http://www.cs.grinnell.edu/~walker/courses/153.sp06/readings/reading-

complexity.shtml

1.2.5 Ordered List Linear Searching

We have analyzed the performance of linear search on an unordered list. It takes so

much time to compare the list items. The average performance of linear search can

be improved by using it on an ordered list. In the case of no matching element, a

forwards search can give up at the first element which is greater than the unmatched

target value, rather than examining the entire list. However, this technique is

relevant only for lists that must be accessed sequentially, such as linked lists or files

with variable-length records lacking an index. If the list is stored as an ordered array,

then binary search is almost always more efficient than linear search as with max >

8, say, unless there is some reason to suppose that most searches will be for the

small elements near the start of the sorted list.

1.3 Binary Search

The next method commonly used for searching is binary search, which gives better

performance than Linear search in terms of time and complexity.

1.3.1 Iterative Version

Binary search is the technique of searching in which requires the list of elements to

be already sorted. The number to be searched is compared with the middle element

of the list . If number is matched with the middle element the process stop. If the

number is greater than this middle element, it is searched in the lower half of the list.

Otherwise, if number is smaller than the middle element, it is searched in the upper

half of the list. This process is repeated till it matches the element or the list finally

contains only one element which is not matched with number to be searched .This

shows that the required number is not present in the list.

Let us take one Sorted List of Elements

23

45

56

66-- Middle element

69

78

90

Suppose the number to searched is 78.

Since 78 is not equal to middle element 66, and

Number is greater than 66.

Now, the new list in which search is to be continued is

69

Searching Methods

Institute of Lifelong Learning, University of Delhi 10

78-Middle element

90

Now the new middle element of this list containing half elements in the list is 78.

This number is matched with number to be searched that is 78.

This process ends here saying that number is present in the list.Since we divide the

list into half again and again to complete the search, this method is sometimes

known as Divide and Conquer searching method.

Fig 1.3 Binary search is a Divide and Conquer Algorithm which cuts it search

space to half

Source:railspikes.com/2008/10/3/finding-css-problems

Value addition: Quick Reference

How binary search works?

http://railspikes.com/2008/10/3/finding-css-problems-with-binary-search

Searching Methods

Institute of Lifelong Learning, University of Delhi 11

 BinarySearch(list,12,10) returns 7

The illustration is of an unsuccessful search: BinarySearch(list,12,25).

www.mtsu.edu/~csci117/manual/lab12/lab12.html

Value addition: Frequently asked question

Where can we use Binary Search?

Number guessing game

This rather simple game begins something like "I'm thinking of an integer between forty and

sixty inclusive, and to your guesses I'll respond 'High', 'Low', or 'Yes!' as might be the case."

Supposing that N is the number of possible values (here, twenty-one as "inclusive" was stated),

then at most questions are required to determine the number, since each question

halves the search space. Note that one less question (iteration) is required than for the general

algorithm, since the number is already constrained to be within a particular range.

Even if the number we're guessing can be arbitrarily large, in which case there is no upper bound

N, we can still find the number in at most steps (where k is the (unknown) selected

number) by first finding an upper bound by repeated doubling. For example, if the number were

http://www.mtsu.edu/~csci117/manual/lab12/lab12.html

Searching Methods

Institute of Lifelong Learning, University of Delhi 12

Binary search algorithm can be applied to list represented using arrays or linked list.

Let us discuss the binary search algorithm using array structure of list.

1. Create two variables called first & last, initialized to 0 & array length -1.

2. Next calculate a position between them called mid (rounding down to the

nearest unit) and check the value stored at that location.

a. If it is equal to the element to be searched, then we've found a match.

Exit and return this index value.

b. If the target value is smaller than the array value set last to one less

than the mid.

c. If the target value is bigger than the array value set first to one more

than the mid.

3. If last is greater than or equal to first repeat steps from #2.

4. The item could not be matched to any element in the ordered array.

Source Code:

 //This function returns the index of a match in array

 // or -1 if no match is found

 int binsearch(int target) {

 int first = 0;

 int last = array.length-1;

 int mid;

11, we could use the following sequence of guesses to find it: 1, 2, 4, 8, 16, 12, 10, 11

One could also extend the technique to include negative numbers; for example the following

guesses could be used to find −13: 0, −1, −2, −4, −8, −16, −12, −14, −13.

Word lists

People typically use a mixture of the binary search and interpolative search algorithms

when searching a telephone book, after the initial guess we exploit the fact that the entries

are sorted and can rapidly find the required entry. For example when searching for Smith, if

Rogers and Thomas have been found, one can flip to a page about halfway between the

previous guesses. If this shows Samson, we know that Smith is somewhere between the

Samson and Thomas pages so we can bisect these

Source: Wikipedia

http://en.wikipedia.org/wiki/Telephone_book

Searching Methods

Institute of Lifelong Learning, University of Delhi 13

 while (first <= last) {

 mid = first + ((last - first) / 2); // or mid =(first + last)/2

 if (array[mid] < target) {

 first = mid + 1;

 } else if (array[mid] > target) {

 last = mid - 1;

 } else {

 return mid;

 }

 }

 return -1;

 }

Fig 1.4 Binary search Example

Source: http://www.ada95.ch/doc/tut1/Searching/binary_search.html

Searching Methods

Institute of Lifelong Learning, University of Delhi 14

Table 1.1 Binary search Performance

Class Search algorithm

Data structure Array

Worst case performance O(log n)

Best case performance O(1)

Average case performance O(log n)

Worst case space complexity O(1)

Value addition: Flowchart

How binary search works?

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Big_O_notation#Orders_of_common_functions

Searching Methods

Institute of Lifelong Learning, University of Delhi 15

How it works

The method relies on and upholds the notion If x is to be found, it will be amongst

elements (L + 1) to (R − 1) of the array.The initialisation of L and R to 0 and N + 1

make this merely a restatement of the supplied problem, that elements 1 to N are to

be searched, so the notion is established to begin with. The first step of each iteration

is to check that there is something to search, which is to say whether there are any

elements in the search span (L + 1) to (R − 1). The number of such elements is (R −

L − 1) so computing (R − L) gives (number of elements + 1); halving that number

(with integer division) means that if there was one element (or more) then p = 1 (or

more), but if none p = 0, and in that case the method terminates with the report "Not

found". Otherwise, for p > 0, the search continues with p:=L + p, which by

http://en.wikipedia.org/wiki/Invariant_(computer_science)
http://en.wikipedia.org/wiki/Invariant_(computer_science)

Searching Methods

Institute of Lifelong Learning, University of Delhi 16

1.3.2 Recursive Version

Iterative algorithms, are those using a loop and can usually be easily rewritten to

use recursive function calls instead of loops. The iterative version is usually simpler,

faster, and uses less memory but some algorithms are better solved using recursion

like traversing a tree because the recursive solution is so clear. Binary search is

better in the non-recursive form, but it is one of the more plausible algorithms to use

as an illustration of recursion. This recursive version checks to see if we're at the

target (in which case it can return), otherwise it calls itself so solve a smaller

problem, that is, either the upper or lower half of the array.

int recBinarySearch(int Array[], int first, int last, int target) {

 // function: Searches Array[first]..Array[last] for target.

 // returns: index of the matching element if it finds target,

construction is within the bounds (L + 1) to (R − 1). That this position is at or

adjacent to the middle of the span is not important here, merely that it is a valid

choice.

Now compare x to A(p).Key. If x = A(p).Key then the method terminates in success.

Otherwise, suppose x < A(p).Key. If so, then because the array is in sorted order, x

will also be less than all later elements of the array, all the way to element (R − 1) as

well. Accordingly, the value of the right-hand bound index R can be changed to be

the value p, since, by the test just made, x < A(p).Key and so, if x is to be found, it

will be amongst elements earlier than p, that is (p − 1) and earlier. And contrariwise,

for the case x > A(p).Key, the value of L would be changed. Thus, whichever bound

is changed the ruling notion is upheld, and further, the span remaining to be

searched is reduced. If L is changed, it is changed to a higher number (at least L +

1), whereas if R is changed, it is to a lower number (at most R − 1) because those
are the limits for p.

Should there have been just one value remaining in the search span (so that L + 1 =

p = R − 1), and x did not match, then depending on the sign of the comparison

either L or R will receive the value of p and at the start of the next iteration the span
will be found to be empty.

Accordingly, with each iteration, if the search span is empty the result is "Not found",

otherwise either x is found at the probe point p or the search span is reduced for the

next iteration. Thus the method works, and so can be called an Algorithm.

Source:http://commons.wikimedia.org/wiki/File:BinarySearch.Flowchart.png

http://en.wikipedia.org/wiki/Algorithm

Searching Methods

Institute of Lifelong Learning, University of Delhi 17

 // otherwise -1.

 // parameters:

 // Array - is array of sorted (ascending) values.

 // first, last - is lower and upper subscript bounds

 // target - is value to search for.

 // returns: index of target, or -1 if target is not in the array.

 if (first <= last) {

 int mid = first +((last - first) / 2); // compute mid point.

 if (target == Array[mid])

 return mid; // found it.

 else if (target < Array[mid])

 // Call itself for the lower part of the array

 return recBinarySearch(Array, first, mid-1, target);

 else

 //Call itself for the upper part of the array

 return recBinarySearch (Array, mid+1, last, target);

 }

 return -1;

 } // failed to find target

Source:self

1.3.3 Complexity of Binary Search

In an Iterative version of binary search, with each iteration, if the search span is

empty the result is "Not found", otherwise either target is found at the probe point p

or the search span is reduced by half for the next iteration. Also, In this version, each

iteration that fails to find a match at the probe position, the search is continued with

one or other of the two sub-intervals, each at most half the size. More precisely, if

the number of items, N, is odd then both sub-intervals will contain (N - 1)/2
elements. If N is even then the two sub-intervals contain N/2 - 1 and N/2 elements.

If the original number of items is N then after the first iteration there will be at most

N/2 items remaining, then at most N/4 items, at most N/8 items, and so on. In the

Searching Methods

Institute of Lifelong Learning, University of Delhi 18

worst case, when the value is not in the list, the algorithm must continue iterating

until the span has been made empty; this will have taken at most ⌊log2(N) + 1⌋

iterations, where the ⌊ ⌋ notation denotes the floor function that rounds its argument

down to an integer. This worst case analysis is tight: for any N there exists a query

that takes exactly ⌊log2(N) + 1⌋ iterations. When compared to linear search, whose

worst-case behaviour is N iterations, we see that binary search is substantially faster

as N grows large. For example, to search a list of 1 million items takes as much as 1

million iterations with linear search, but never more than 20 iterations with binary

search. However, binary search is only valid if the list is in sorted order.

Average performance:There are two cases: for searches that will fail because the

value is not in the list, the search span must be successively halved until no more

elements remain and this process will require at most the p probes just defined, or

one less. This latter occurs because the search span is not in fact exactly halved, and

depending on the value of N and which elements of the list the absent value x is

between, the span may be closed early. For searches that will succeed because the

value is in the list, the search may finish early because a probed value happens to

match. Loosely speaking, half the time the search will finish one iteration short of the

maximum and a quarter of the time, two early. Consider then a test in which a list of

N elements is searched once for each of the N values in the list, and determine the

number of probes n for all N searches.

 N = 1 2 3 4 5 6 7 8 9 10 11 12 13

n/N = 1 3/2 5/3 8/4 11/5 14/6 17/7 21/8 25/9 29/10 33/11 37/12 41/13

 1 1.5 1.66 2 2.2 2.33 2.43 2.63 2.78 2.9 3 3.08 3.15

In short log2(N) − 1 is about the expected number of probes in an average successful

search, and the worst case is log2(N), just one more probe. If the list is empty, no

probes at all are made Suppose the list to be searched contains N even numbers

(say, 2,4,6,8 for N = 4) and a search is done for values 1, 2, 3, 4, 5, 6, 7, 8, and 9.

The even numbers will be found, and the average number of iterations can be

calculated as described. In the case of the odd numbers, they will not be found, and

the collection of test values probes every possible position (with regard to the

numbers that are in the list) that they might be not found in, and an average is

calculated. The maximum value is for each N the greatest number of iterations that

were required amongst the various trail searches of those N elements. The first plot

shows the iteration counts for N = 1 to 63 (with N = 1, all results are 1), and the

second plot is for N = 1 to 32767.

http://www.answers.com/topic/binary-logarithm
http://www.answers.com/topic/floor-and-ceiling-functions
http://www.answers.com/topic/best-and-worst-cases
http://www.answers.com/topic/binary-logarithm
http://www.answers.com/topic/linear-search

Searching Methods

Institute of Lifelong Learning, University of Delhi 19

Fig 1.5 :Iteration count for 1 ≤ N < 64 Source:Wikipedia

The curve for the "found" searches approaches log2(N) − 1 more closely for larger N

as larger numbers of iterations are involved, in the same way that the successive

summations 1/2, 1/4 + 1/2, 1/8 + 1/4 + 1/2 approach 1 as the number of terms

increases: these are the probabilities of early detection of equality in successive

iterations of a search. The slight bend in the curves within each iteration limit group

is due to the early narrowing of the search bounds into two sub-spans whose lengths

are often unequal.

Fig 1.6: Iteration count for 1 ≤ N < 32768 Source:Wikipedia

Searching Methods

Institute of Lifelong Learning, University of Delhi 20

Thus binary search is a logarithmic algorithm and executes in O(log N) time. In most

cases it is considerably faster than a linear search. It can be implemented using

iteration (as shown above), or recursion. In some languages it is more elegantly

expressed recursively; however, in some C-based languages tail recursion is not
eliminated and the recursive version requires more stack space.

The major disadvantages of Binary search are:

 Binary search can interact poorly with the memory hierarchy (i.e. caching),

because of its random-access nature. For in-memory searching, if the span to

be searched is small, a linear search may have superior performance simply

because it exhibits better locality of reference. For external searching, care

must be taken or each of the first several probes will lead to a disk seek. A

common technique is to abandon binary searching for linear searching as

soon as the size of the remaining span falls below a small value such as 8 or

16 or even more in recent computers. The exact value depends entirely on
the machine running the algorithm.

 Inserting and deleting elements: The main disadvantage of sorted arrays is

that inserting and deleting random elements executes in O(N) time. This is

not true in all cases however. The search algorithm can be changed to check

the last element first, which allows loading a sorted list at O(1) time per
element.

 Numerical difficulties: In a practical implementation, the variables used to

represent the indices will be of finite size, hence only capable of representing

a finite range of values. For example, 16-bit unsigned integers can only hold

values from 0 to 65535. If the binary search algorithm is to operate on large

arrays, this has two implications:

 The values first − 1 and last + 1 must both be representable within

the finite bounds of the chosen integer type . Therefore, continuing the

16-bit example, the largest value that last may take is +65534, not

+65535. A problem exists even for the "inclusive" form of the method,

as if x > A(65535).Key, then on the final iteration the algorithm will

attempt to store 65536 into L and fail. Equivalent issues apply to the

lower limit, where first − 1 could become negative as when the first

element of the array is at index zero.

 If the midpoint of the span is calculated as mid := (L + F)/2, then

the value (L + F) will exceed the number range if last is greater than

(in our example) 65535/2 and the search wanders toward the upper

end of the search space. This can be avoided by performing the

calculation as mid := (L - F)/2 + F

http://www.answers.com/topic/logarithm
http://www.answers.com/topic/big-o-notation
http://www.answers.com/topic/linear-search
http://www.answers.com/topic/iteration
http://www.answers.com/topic/recursion
http://www.answers.com/topic/cache
http://www.answers.com/topic/big-o-notation
http://www.answers.com/topic/big-o-notation
http://www.answers.com/topic/signedness

Searching Methods

Institute of Lifelong Learning, University of Delhi 21

We study a noisy version of the classic binary search problem of inserting an element into

its proper place within an ordered sequence by comparing it with elements of the

sequence. In the noisy version we can not compare elements directly. Instead we are

given a coin corresponding to each element of the sequence, such that as one goes

through the ordered sequence the probability of observing heads when tossing the

corresponding coin increases. We design online algorithms which adaptively choose a

sequence of experiments, each consisting of tossing a single coin, with the goal of

identifying the highest-numbered coin in the ordered sequence whose heads probability is

less than some specified target value. Possible applications of such algorithms include

investment planning, sponsored search advertising, admission control in queueing

networks, college admissions, and admitting new members into an organization ranked by
ability, such as a tennis ladder.

Value addition: Graphical Representation

How Time of search is related with size of Array in Binary Sarch?

.
Source:http://www.cs.grinnell.edu/~walker/courses/153.sp06/readings/reading-
complexity.shtml

Searching Methods

Institute of Lifelong Learning, University of Delhi 22

Value addition: Do you Know

What happened after extending Binary Search in terms of size and
elements?

There is no particular requirement that the array being searched has the bounds 1 to N. It

is possible to search a specified range, elements first to last instead of 1 to N. All that is

necessary is that the initialisation be L:=first − 1 and R:=last + 1, then all proceeds as
before.

The elements of the list are not necessarily all unique. If one searches for a value that

occurs multiple times in the list, the index returned will be of the first-encountered equal

element, and this will not necessarily be that of the first, last, or middle element of the

run of equal-key elements but will depend on the positions of the values. Modifying the

list even in seemingly unrelated ways such as adding elements elsewhere in the list may

change the result. To find all equal elements an upward and downward linear search can

be carried out from the initial result, stopping each search when the element is no longer

equal. Thus, e.g. in a table of cities sorted by country, we can find all cities in a given
country.

Several algorithms closely related to or extending binary search exist. For instance, noisy

binary search solves the same class of projects as regular binary search, with the added

complexity that any given test can return a false value at random. (Usually, the number

of such erroneous results are bounded in some way, either in the form of an average

error rate, or in the total number of errors allowed per element in the search space.)

Optimal algorithms for several classes of noisy binary search problems have been known

since the late seventies, and more recently, optimal algorithms for noisy binary search in

quantum computers (where several elements can be tested at the same time) have been
discovered.

Source: Wikipedia

Value addition: Do you Know

What are the different variations in Binary Search ?

Exclusive or inclusive bounds

The most significant differences are between the "exclusive" and "inclusive" forms of the

bounds. This description uses the "exclusive" bound form, that is the span to be searched is

(L + 1) to (R − 1), and this may seem clumsy when the span to be searched could be

described in the "inclusive" form, as L to R. Although the details differ the two forms are

equivalent as can be seen by transforming one version into the other. The inclusive bound

form may be attained by replacing all appearances of "L" by "(L − 1)" and "R" by "(R + 1)"

then rearranging. Thus, the initialisation of L:=0 becomes (L − 1):=0 or L:=1, and R:=N +

Searching Methods

Institute of Lifelong Learning, University of Delhi 23

1 becomes (R + 1):=N + 1 or R:=N. So far so good, but note now that the changes to L

and R are no longer simply transferring the value of p to L or R as appropriate but now

must be (R + 1):=p or R:=p − 1, and (L − 1):=p or L:=p + 1.

Thus, the gain of a simpler initialisation, done once, is lost by a more complex calculation,

and which is done for every iteration. If that is not enough, the test for an empty span is

more complex also, as compared to the simplicity of checking that the value of p is zero.

Nevertheless, the inclusive bound form is found in many publications, such as Donald

Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Third Edition.

Deferred detection of equality

Because of some of the syntax difficulties, distinguishing the three states <, =, and > would

have to be done with two comparisons, it is possible to use just one comparison and at the
end when the span is reduced to zero, equality can be tested for.

Midpoint and width

An entirely different variation involves abandoning the L and R pointers in favour of a

current position p and a width w where at each iteration, p is adjusted by + or − w and w is

halved. Professor Knuth remarks "It is possible to do this, but only if extreme care is paid to

the details" – Section 6.2.1, page 414 of The Art of Computer Programming, Volume 3:

Sorting and Searching, Third Edition, outlines an algorithm, with the further remark
"Simpler approaches are doomed to failure!"

Source: Wikipedia

Value addition: Frequently Asked Question

What is Boolean searching and why we use it?
Boolean searching is a method that allows you to combine multiple concepts within a topic. This is done by
using the following connectors: and, or, not. And is most frequently used to narrow a topic, e.g., 'death

penalty' AND race would retrieve all items pertaining to both topics and no items pertaining to either topic by
itself. Or is used to expand a topic, e.g., 'death penalty' OR race would retrieve all items pertaining to either

topic, which means you would retrieve many items about race that don't mention the death penalty and vice
versa. Not is used to exclude unwanted topics, e.g., 'death penalty' NOT race would retrieve items only

pertaining to the death penalty and would retrieve no items pertaining to both.

Below are some examples of Boolean searches.

Use "and" to narrow the topic.

http://www.answers.com/topic/donald-knuth
http://www.answers.com/topic/donald-knuth

Searching Methods

Institute of Lifelong Learning, University of Delhi 24

1.4 Skip List

When we use the normal linked list either singly or doubly as a data structure to

store the data, the common operation required by the user is to search an element

from this data structure. The major disadvantage of this linked list is to traverse the

list element(nodes) one by one starting from the beginning till the element is

searched. The worst case is if the element is present in the end of the linked list. It

takes O(n) time to search the elements. Keeping in mind, the importance of

searching we can do various variations: Ordering a list will still need searching

sequentially from the beginning till end. Another important variation in this list is if

we may be able to skip certain nodes for searching the elements. So, Skip list

Sports and Women

Use "or" to expand the topic.

Sports or Women

Use "not" to exclude, or rule out certain words or concepts.

Sports not Women

Source: www4.uwm.edu/libraries/help/faq/boolean.html

http://www4.uwm.edu/libraries/help/faq/boolean.html

Searching Methods

Institute of Lifelong Learning, University of Delhi 25

introduced by William Pugh(1990) is the variant of ordered linked list in which

elements are searched non sequentially by skipping some elements.

1.4.1 Concept

Let us observe following variants of an ordered linked list :

 If we skip every other node that is every second node points to the next and

the one after that node. See Fig 1.7(a)

 If we skip every second and fourth node i.e a bigger skip than earlier skip. In

this at every fourth node list is checked until search is confined between two

nodes with size 3. Now, only 3 nodes are to be scanned for searching an

element. So, number of nodes examined is no more than ┌ n/4 ┐+3 where n

is number of nodes in the list. See Fig 1.7(b)

Value addition: Mathematical Representation

How can you mathematically represent skip List?

Source:cpp.datastructures.net/presentations/SkipLists.pdf

Searching Methods

Institute of Lifelong Learning, University of Delhi 26

 Another improved alternative is to add hierarchy of skip pointers that is every

2i-th node points 2i nodes ahead. For example, every 2nd node has a reference

2 nodes ahead; every 8th node has a reference 8 nodes ahead. See Fig 1.9.

There are some serious problems with this structure. This structure looks

pretty good, but what happens when we insert or remove a value from the

list? Reorganizing the list is O(N). For example, suppose the first element of

the list was removed. Since it’s necessary to maintain the strict pattern of

node sizes, it’s easiest to move all the values toward the head and remove

the end node. A similar situation occurs when a new node is added.

Conceptually, We say

A skip list maintains the same distribution of nodes, but without the requirement for

the rigid pattern of node sizes

o 1/2 have 1 pointer

o 1/4 have 2 pointers

o 1/8 have 3 pointers

o …

o 1/2i have i pointers

As, It’s no longer necessary to maintain the rigid pattern by moving values around

for insertion and removed. This gives us a high probability of still having O(log N)

performance. The probability that a skip list will behave badly is very small. We have

a variant of Skip List called probabilistic Skip List.

Searching Methods

Institute of Lifelong Learning, University of Delhi 27

Fig 1.7 Skip List: Ordered Linked list variants Source:self

1.4.2 A Probabilistic Skip List

The number of forward reference pointers a node has is its “size”. The distribution of

node sizes can be same as shown in the other figures, but the nodes just occur in a

different pattern. As shown in figure 1.8, this is a probabilistic skip list with 10

different nodes placed at different positions not forming any pattern. The one pointer

nodes are six in number but are placed at different positions in probabilistic skip list

whereas the skip list shown in fig 1.9 have six one pointer nodes forming

symmetrical pattern in the list.

Fig:1.8 A Probabilistic Skip List with head and tail

Source: http://www.usenix.org/event/usits03/tech/harvey/harvey_html/index.html

5 15 9 25

10 8 20

a) Every second node is skipped

15

31

18 10 29

b) Every second and fourth node is skipped

6

25

33

40

head

head

Searching Methods

Institute of Lifelong Learning, University of Delhi 28

Fig 1.9 Skip list: Improved variant Source:self

1.4.3 Searching in Skip List

Let us take the Skip List in the Fig 1.7(b). To search an element 31 in the skip list,

We start with the head pointer, which points to different linked list at three levels.

Searching starts from uppermost level which points to node with value 6 and has

three pointers. It skips the nodes in between. Since the number 6 is less than the

31 , the number is now compared with the next elements in the list at that level that

is 25. Since 25<31, the number is now compared with the next elements in the list

at that level i.e 40. Since 40>31, Number has to be searched between the node

 10

 Every 2i-th node points 2i nodes

ahead

Head

1 4 6 8 10 15

17 19 20 25 30 32

Searching Methods

Institute of Lifelong Learning, University of Delhi 29

having 25 and node having 40. Now, we move one level down in the array of next

pointer of node having 25. In this level , first node pointed by the pointer is the node

having 31. Element is present in the skip list. It requires [8/4]+1 =2+1=3

comparisons to reach the required node having element to be searched. Comparison

will be done with 6,25 and 40.

Head

Fig 1.10 Probabilistic Skip List with head

Source:self

Suppose this list contained 32 nodes and we want to search for some value in it.

Working down from the top, we first look at node having element 32 and have cut

the search in half. When we look again one level down in either the right or left half,

we have cut the search in half again. We continue in this manner until we find the

node being sought (or not). This is just like binary search in an array. Intuitively we

can understand why the max number of nodes examined is O(log n). So we can

define Skip list as “A randomized variant of an ordered linked list with additional,

parallel lists. Parallel lists at higher levels skip geometrically more items. Searching

begins at the highest level, to quickly get to the right part of the list, then uses

http://www.itl.nist.gov/div897/sqg/dads/HTML/randomizedAlgo.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/orderedLinkedList.html

Searching Methods

Institute of Lifelong Learning, University of Delhi 30

progressively lower level lists. A new item is added by randomly selecting a level,

then inserting it in order in the lists for that and all lower levels. With enough levels,

searching is O(log n).”

Value addition: Illustration

How searching is done in Skip List?

Source:cpp.datastructures.net/presentations/SkipLists.pdf

http://www.itl.nist.gov/div897/sqg/dads/HTML/bigOnotation.html

Searching Methods

Institute of Lifelong Learning, University of Delhi 31

Value addition: Original Research

Who proposes this concept of Skip List?

 Skip Lists were developed around 1989 by William Pugh1 of the University of

Maryland. Professor Pugh sees Skip Lists as a viable alternative to balanced trees

such as AVL trees or to self-adjusting trees such as splay trees.

William Pugh (Bill Pugh) is the inventor of the skip list and co-author of the static

code analysis tool FindBugs, and was highly influential in the development of the

current memory model of the Java language together with his PhD student Jeremy

Manson.He is currently a professor of computer science at the University of Maryland,

College Park, and also sits on the technical advisory board for Fortify Software.Here is

the first publication ever on skip lists by their inventor William Pugh - Skip Lists: A

Probabalistic Alternative to Balanced Trees.

Source:wikipedia

Value addition: Related Work

What is the concept of Skip Net?

Scalable overlay networks, such as Chord, CAN , Pastry , and Tapestry , have

recently emerged as flexible infrastructure for building large peer-to-peer

systems. A key function that these networks enable is a distributed hash table

(DHT), which allows data to be uniformly diffused over all the participants in the
peer-to-peer system.

While DHTs provide nice load balancing properties, they do so at the price of

controlling where data is stored. This has at least two disadvantages: Data may

be stored far from its users and it may be stored outside the administrative

domain to which it belongs. The introduction of SkipNet, a distributed

generalization of Skip Lists, adapted to meet the goals of peer-to-peer systems.

SkipNet is a scalable overlay network that supports traditional overlay

functionality as well as two locality properties that we refer to as content locality
and path locality.

Content locality refers to the ability to either explicitly place data on specific

overlay nodes or distribute it across nodes within a given organization. Path

locality refers to the ability to guarantee that message traffic between two overlay
nodes within the same organization is routed within that organization only.

Source:http://www.usenix.org/event/usits03/tech/harvey/harvey_html/index.html

http://www.csee.umbc.edu/courses/undergraduate/341/fall01/Lectures/SkipLists/skip_lists/skip_lists.html#foot13#foot13
http://en.wikipedia.org/wiki/Skip_list
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/FindBugs
http://en.wikipedia.org/wiki/Java_Memory_Model
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/w/index.php?title=Jeremy_Manson&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Jeremy_Manson&action=edit&redlink=1
http://en.wikipedia.org/wiki/University_of_Maryland,_College_Park
http://en.wikipedia.org/wiki/University_of_Maryland,_College_Park
http://en.wikipedia.org/wiki/Fortify_Software
http://www.catonmat.net/blog/wp-content/uploads/2008/10/skip-lists-williampugh.pdf
http://www.catonmat.net/blog/wp-content/uploads/2008/10/skip-lists-williampugh.pdf

Searching Methods

Institute of Lifelong Learning, University of Delhi 32

1.4.4 Structure of Skip List

Skip lists are made up of a series of nodes connected one after the other. Each node

contains a value as well as one or more references, or pointers, to nodes further

along in the list. The number of references each node contains is determined

randomly. This gives skip lists their probabilistic nature, and the number of

references a node contains is called its node level. The node structure is given as

below: Actually the node contains value(key)s and one single pointer reference. This

pointer reference contains the address to the array of pointers. This array consist of
pointers to the nodes further ahead in the linked list at different levels.

Fig 1.11: Structure of nodes with one and three pointers

Source:self

As each node will have at least one node reference, and the reference will always

point to the next node in the list. In this way, skip lists are very much like linked

5

10

5

10

Nodes containing pointer to array having

only one valid pointer

Node containing pointer to array having three

valid pointers

Array of

pointers

Searching Methods

Institute of Lifelong Learning, University of Delhi 33

lists. However, any additional node references can skip one or more intermediate
nodes and point to nodes later in the list. This is where skip lists get their name.

The header node root is always present in a skip list. The header node marks the

beginning of the list . However, We may use the NIL node to mark the end of the list

If used, the NIL node is unique in that when a skip list is created, it may be given a
key greater than any legal key that will be inserted into the skip list.

Skip lists have three more important properties: maximum level, current overall

level, and probability. Maximum level is the highest level a node in a skip list may

have. In other words, maximum level is the maximum number of references a skip

list node may have to other nodes. The current overall level is the value of the node

level with the highest level in the skip list. Probability is a value used in the algorithm

for randomly determining the level for each node. Let us take the small probabilistic

skip list with header and NIL pointer node. This is also known as Uneven list.

Fig 1.12 A uneven probabilistic skip list with several nodes.

Source: www.lesliesanford.com/Programming/SkipList.shtml

http://www.lesliesanford.com/Programming/SkipList.shtml

Searching Methods

Institute of Lifelong Learning, University of Delhi 34

1.4.5 Skip List as multiple Linked lists

When we are talking about skip list containing nodes with different levels, we can

visualize the skip list as that many linked list as the number of maximum levels in the

list. Node to be inserted will be inserted in all linked lists according to number of

pointers it has. Similarly deletion will be according done from all linked list where that

node is linked. As shown below there are five linked lists in this skip list. Each linked

list is a sub list of lower one. Lower linked list contains all nodes of the list.

9900

77
9900

22
55

88
77

9900

Searching Methods

Institute of Lifelong Learning, University of Delhi 35

55 77
9900

55
88

77
9900

22
55

88
77

9900

Fig 1.13 Skip List having five linked list

Source: www.cs.brown.edu/courses/cs176/ch14.ppt

1.4.6 Operations on Skip List

There are many operations we can do on skip List . Basic operations we do are

Insertions, Deletion and Searching. To insert a node we have to create nodes for the
skip list. It requires certain methods to find level of nodes.

To determine the node level we have to use the random() function for generating

random value 0..1. The level for each node is determined using the following
algorithm:

randomLevel()

 lvl := 1

 --random() that returns a random value in [0...1)

 while random() < p and lvl < MaxLevel do

Searching Methods

Institute of Lifelong Learning, University of Delhi 36

 lvl := lvl + 1

 return lvl

Where p is the skip list's probability value and MaxLevel is the maximum level

allowed for any node in the skip list.

The node level is initialized to a value of 1. Each time the while loop executes, the

level value is incremented by 1. If p is set to a value of 0.5, then there is a 50%

chance that the while loop will execute once, a 25% chance it will execute twice, and

a 12.5% chance it will execute three times. This creates a structure in which there
will be more nodes with a lower level than higher ones.

There is room for optimization here. Suppose the overall level of a skip list is 4 and a

value of 7 is returned by the randomLevel algorithm for a new node. Since 7 is larger

than 4, the new skip list level will be 7. However, 7 is 3 levels greater than 4. What

this means is that when searching the skip list, there will be 2 additional levels that

will have to be traversed unnecessarily (this will become more clear when we

examine the search algorithm). What is needed is a way to limit the results of the

randomLevel algorithm so that it never produces a level greater than one more than

the present overall skip list level. Pugh makes a suggestion to "fix the dice." Here is

the altered randomLevel algorithm:

randomLevel(list)

 lvl := 1

 --random() that returns a random value in [0...1)

 while random() < p and lvl < MaxLevel and lvl <= list->level do

 lvl := lvl + 1

 return lvl

The another variation is when we fix the number of nodes according to the Maxlevel

of the list. Suppose the Maxlevel is 4. For 15 nodes , half the nodes of the list is one

pointer nodes i.e 8, one fourth are two-pointer nodes i.e 4, one eight are three

pointer nodes i.e 2, rest are four pointer node i.e 1. To avoid rearrangement of nodes

in even list, we can fix the number of nodes but may change their positions to make

it uneven . We apply random number generation algorithm to create a node a randon

number r between 1 to 15 is generated.

For r<9, node with one pointer

For r<13, node with two-pointer

For r<15, node with three-pointer

For r=15, node with four pointer

is created.

If Maxlevel is 5, then for 31 nodes

For r<17, node with one pointer

For r<25, node with two-pointer

For r<29, node with three-pointer

For r<31, node with four pointer

For r=31, node with five pointer

Searching Methods

Institute of Lifelong Learning, University of Delhi 37

is created.

So, the array for Maxlevel=4 is [1 9 13 15] and for Maxlevel=5 is [1 17 25 29 31].

Using this array and random number generation we can create the node to be

inserted in the list. For this variation ,the two functions are given below

As discussed searching for a key within a skip list, it begins with header at the

overall list level and moving forward in the list comparing node keys to the search

key. If the node key is less than the search key, the search continues moving forward

at the same level. If on the other hand, the node key is equal to or greater than the

search key, the search drops down one level and continues forward. This process

continues until the search key has been found if it is present in the skip list. If it is

not, the search will either continue to the end of the list or until the first key with a
value greater than the search key is found.

The other important operations are insertion and deletion in the skip list. Although

insertion requires the searching module to find the proper place of new node

according to its ordinal value. As soon as it finds that place, insertion module insert

the node at all levels according to its pointers. Similarly Deletion requires the
searching of the element and then delete the node at all levels of the skip list.

Searching Methods

Institute of Lifelong Learning, University of Delhi 38

Source: Data Structure And Algorithms In C++ 2nd ed - Adam Drozdek

In this searching method code, prev and curr pointers are used to point to the

previous node and current node while traversing the list at some level. They are

initialized with the first pointer of root at highest level . then key to be searched is

compared with curr->key, if key is less ,then for coming down to one level down in

array referred by next pointer we have to go back one node i.e referred using prev

and add –-lvl (level) to prev->next. This is pointed as new curr. Similarly if key is

greater, it is compared with next node at that level further. If it does not have next

element, it comes down to the next lower level using lvl-- and search the key at

different levels.

Fig 1.14 Searching for the key with a value of 8.

Source: http://www.lesliesanford.com/Programming/SkipList.shtml

Searching Methods

Institute of Lifelong Learning, University of Delhi 39

Insertion begins with a search for the place in the skip list to insert the new
key/value . The code is given below:

when the new node is inserted into the skip list, curr and prev pointers should be

declared as array because while inserting a node , depending upon the number of

pointers it has , the links to next pointers at all these levels should be simultaneously
maintained.

Searching Methods

Institute of Lifelong Learning, University of Delhi 40

The first part of this algorithm should look familiar. It is the same as the search

algorithm except that it uses the update array to hold references to the nodes where

the search drops down one level. After the search has ended, a check is made to see

if the key in the node where the search stopped matches that of the search key. If

so, the value for that key is replaced with the new value. If on the other hand, the
keys do not match, a new node is created and inserted into the skip list.

To insert a new node, a node level is retrieved from the chooseLevel algorithm. If this

value is greater than the current overall level of the skip list, the references in the

update array from the overall skip list level up to the new level are assigned to point

to the root. This is done because if the new node has a greater level than the current

overall level of the skip list, the forward references in the header will need to point to

this new node instead of the NIL node(if used). This reassignment takes place during
the next step of the algorithm.

Next, the new node is actually created and it is spliced into the skip list in the next

for loop. What this loop does is work from the bottom of the skip list up to the new

node's level reassigning the forward references along the way. It's much the same as

rearranging the references in a linked list when a new node is inserted except that

with a skip list there are an array of references that have to be reassigned rather
than just one or two.

a) The skip list before inserting key 10.

 b) The skip list after inserting key 10.

Source: http://www.lesliesanford.com/Programming/SkipList.shtml

Fig 1.15 Insertion in skip list

Deletion uses the same search algorithm as insertion; it keeps track of each place in

the list in which the search dropped down one level. If the key to be deleted is found,

the node containing the key is removed.

After the key is found, the loop begins from the bottom of the skip list to the top

reassigning the nodes with references to the soon to be deleted node to the nodes

Searching Methods

Institute of Lifelong Learning, University of Delhi 41

that come after it in different linked lists . Again, very much like a linked list except

that here there are an array of links to nodes further along in the list that must be

managed.

Once this has been done, the node is deleted. The only thing left to do is to update

the overall current list level if necessary.

a) The skip list before removing key 9.

b) The skip list after removing key 9. Fig 1.16 Deletion in skip list

Source: http://www.lesliesanford.com/Programming/SkipList.shtml

As observed after the example , there are many advantages of skip list . Few of them

are

 Implementation of Skip list is straightforward as compared to balanced

tree algorithm for searching.

 Storage requirement are less as compared to balanced tree searching

technique.

 Insertions and deletions do not require readjustment for uneven list.

 It supports Insert ,delete , search operations. Its is useful for system

programming.
 Efficient searching of the order of O(log n).

The disadvantages are

 Random number generation required which is difficult to debug.

 As compared to simple techniques of searching ,complexity in coding is

increased.

 It is applied only on the sorted linked list which requires prior extra

efforts to sort it.

 Foe evenly distributed skip list ,it is very difficult to rearrange the list

nodes in the skip list.

Searching Methods

Institute of Lifelong Learning, University of Delhi 42

Fig 1.17 :Skip List Example

Source: http://www.cosc.canterbury.ac.nz/research/RG/alg/skip_list.gif

Searching Methods

Institute of Lifelong Learning, University of Delhi 43

1.4.7 Skip Lists Running Time

In "Skip Lists: A Probabilistic Alternative to Balanced Trees," Pugh provides a quick

proof showing that the skip list's search, insertion, and deletion running times are

asymptotically bounded by log2n in the average case. However, a skip list can exhibit

linear time in the worst case, but the likelihood of the worst case happening is very,

very, very, very slim.

Because the heights of the elements of a skip list are randomly chosen, there is a

chance that all, or virtually all, elements in the skip list will end up with the same

height. For example, imagine that we had a skip list with 100 elements, all that

happened to have height 1 chosen for their randomly selected height. Such a skip list

would be, essentially, a normal linked list, not unlike the probabilistic skip list. As we
know, the running time for operations on a normal linked list is linear.

While such worst-case scenarios are possible, realize that they are highly improbable.

To put things in perspective, the likelihood of having a skip list with 100 height 1

elements is the same likelihood of flipping a coin 100 times and having it come up

tails all 100 times. The chances of this happening are precisely 1 in

1,267,650,600,228,229,401,496,703,205,376. Of course with more elements, the
probability goes down even further.

The graph in Figure 1.17 shows the average number of comparisons per operation for

increasing skip list sizes. Note that as the skip list doubles in size, the average

number of comparisons needed per operation only increases by a small amount (one

or two more comparisons). To fully understand the utility of logarithmic growth,

consider how the time for searching an array would fare on this graph. For a 256

element array, on average 128 comparisons would be needed to find an element. For

a 512 element array, on average 256 comparisons would be needed. Compare that to

the skip list, which for skip lists with 256 and 512 elements require only 9 and 10

comparisons on average.

Searching Methods

Institute of Lifelong Learning, University of Delhi 44

Fig 1.18 Viewing the logarithmic growth of comparisons required for an increasing
number of skip list elements.

Source:http://msdn.microsoft.com/en-us/library/ms379573(VS.80).aspx

 1.4.8 Application of Skip List

Skip List based concurrent priority Queue: There are many problems in
designing scalable concurrent priority queues for large scale multiprocessors

machines with up to several hundred processors. Priority queues are fundamental in

the design of modern multiprocessor algorithms, with many classical applications

ranging from numerical algorithms through discrete event simulation and expert

systems. While highly scalable approaches have been introduced for the special case

of queues with a fixed set of priorities, the most efficient designs for the general case

are based on the parallelization of the heap data structure. Though numerous

intricate heap-based schemes have been suggested in the literature, their scalability

seems to be limited to small machines in the range of ten to twenty processors.

There is an alternative approach: to base the design of concurrent priority queues on

the probabilistic skiplist data structure, rather than on a heap. To this end, we show

that a concurrent skiplist structure, following a simple set of modifications, provides a

concurrent priority queue with a higher level of parallelism and significantly less

contention than the fastest known heap-based algorithms. Our initial empirical

evidence, collected on a simulated 256 node shared memory multiprocessor

architecture similar to the MIT Alewife, suggests that the new skiplist based priority

queue algorithm scales significantly better than heap based schemes throughout

most of the concurrency range. With 256 processors, they are about twice as fast in
performing deletions and up to 8 times faster in performing insertions.

Value addition: pictorial representation

Perfect Skip List

Source:http://www.as3dp.com/

Searching Methods

Institute of Lifelong Learning, University of Delhi 45

Summary

 Searching methods are required in computer science to deal with the

voluminous data. It is necessary to find and retrieve data from the data store.

 There are many methods for searching, varying in complexity and time to

search.

 Most commonly used methods are linear search, binary search and skip list .

 Linear search method is a simple method involving comparing key element

with all elements of the list. Linear search method can be implemented

iteratively and recursively .

 Complexity of Linear search method is of the order of O(N) in worst case.

 Time required for searching an element from the list using linear search is

very high if the list is quite big. So, this method is suitable only for small lists.

 Binary search method is an improved method in terms of time required for

searching an element from the list.

 This method requires an ordered list for searching an element. Key is

compared with middle element.In Binary search method every time the list is

halved to search the element on the left side or right side of the middle

element.

 Complexity of binary search method is O(N/2) where Ns is total number of

elements..

 Skip list is the method based on ordered list again. It has multiple linked lists.

 Skip list consists of a number of nodes having different number of levels.

 Lowest linked list in the skip list consist of all elements.

 Searching requires less number of comparisons with elements as searching

starts from upper linked list and move forward in lower linked lists .

 Complexity of skip list searching is of the order of Os(log N).

Exercises

Q.1 Implement Linear search using Singly Linked list.

Q.2 Implement Binary search using doubly linked list

Q.3 What are the differences between Linear and Binary search?

Searching Methods

Institute of Lifelong Learning, University of Delhi 46

Q.4 What are applications of linear search and binary search?

Q.5 How binary search is better than Linear search?

Q.6 Why skip list is used?

Q.7 Discuss the complexity of linear search and binary search?

Q.8 How skip list is better than other search techniques?

Q.9 Differentiate between even and uneven skip list? Why insertion and deletion are

difficult with even list?

Q.10 Implement deletion in skip list in c++.

Q.11 Write code for recursive linear search.

Q.12 What happens when a skip list is represented as a Doubly Linked list?

Glossary

Abstract data type

 A data type whose properties (domain and operations) are specified

independently of any particular representation : a class of data objects with

a defined set of operations that process the data objects while maintaining

its properties.

Array data type

 A collection of components, all of the same type indexed by 0..N index

values.

Algorithm

 A logical sequence of discrete steps that describes a complete solution to a

given problem.

Big-O notation

A notation that expresses computing time (complexity) as the term in a

function that increases most rapidly relative to the size of the problem.

Binary search

Searching Methods

Institute of Lifelong Learning, University of Delhi 47

A search algorithm for sorted lists that involves dividing the list in half and

determining by value comparison , whether the item would be in the upper

or lower half; the process is repeated until item is found or not present.

Complexity

 A measure of the effort expended by the computer in performing a

computation ,relative to the size of the computation .

Doubly Linked list

 A linked list in which each node is linked to both its successor and its

predecessor.

Dynamic data structure

 A data structure that can expand and contract during program execution.

Implementing

 Coding and testing an algorithms

Index

 A value that selects the component from the array.

Iteration

 An individual pass through or repetition of, the body of the loop .

Linked list

 A list in which the order of the components is determined by an explicit link

field in each node, rather than by the sequential order of the component in
the memory.

Linear search

 A method in which key is compared with all the elements of the list in a
sequence from the beginning till element is found or not present in the list.

Recursion

 A situation in which the subroutine calls itself

Skip list

 An ordered list with multiple linked lists having nodes containing different
levels of nodes.

Searching Methods

Institute of Lifelong Learning, University of Delhi 48

References

Suggested Readings

 1. Fundamentals of Data Structures - Ellis Horowitz

 2. Data Structure And Algorithms In C++ 2nd ed - Adam Drozdek

 3. Algorithms and Data Structures in CPlusPlus - Alan Parker

 4. C++ plus Data Structures 4th ed - Nell Dale

 5. Data Structures and Algorithms - Alfred V. Aho

 6. Data Structures and Program Design in C++ - Robert L. Kruse

 7. Data Structure using C and C++ - Langsam ,Augenstein and

Tanenebaum

Web Links

 1. www.codefords.wordpress.com

 2. www.Wikipedia .org

 3. www. read.cs.ucla.edu

 4. www.cs.usfca.edu

 5 http://www.cosc.canterbury.ac.nz/research/RG/alg/

 6. www.cs.brown.edu/courses/cs176/ch14.ppt

. 7 .commons.wikimedia.org/wiki/File:BinarySearch.Flowchart.png

http://www.codefords.wordpress.com/
http://www.cs.usfca.edu/
http://www.cosc.canterbury.ac.nz/research/RG/alg/

