
An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Discipline Courses-I

Semester-I
Paper: Programming Fundamentals

Unit-I
Lesson: An Introduction to Programming

Lesson Developer: Rakhi Saxena
College/Department: Deshbandhu College, University

of Delhi

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Table of Contents
 Chapter 1: An Introduction to Programming

 1.1: An Introduction to Programming

 1.1.1: Learning Objectives

 1.1.2: What is a Program?

 1.1.2.1: Creating Computer Programs

 1.1.2.2: Program Development Cycle

 1.1.3: Basic Programming Concepts

 1.1.3.1: A Simple Program

 1.1.3.2: Running a C++ Program

 1.1.3.3: Commenting your Code

 1.2: Variables and Constants

 1.2.1: Learning Objectives

 1.2.2: The Structure of a C++ Program

 1.2.2.1: Data Input, Processing and Output

 1.2.3: Program Variables

 1.2.4: Program Constants

 1.2.5: Variable Assignment and Reassignment

 1.2.6 Exchanging the Value of Variables

 Summary

 Exercises

 Glossary

 References

 1.1 An Introduction to Programming

Welcome to Chapter 1! To become a successful programmer, it is important to know

what a computer program is before you start writing one. In this chapter you will

learn what a program is. You will learn to write a simple C++ program and how to

execute it. This chapter also provides a brief overview of the program development

cycle.

These concepts will help you understand the structure and syntax of C++ programs.

1.1.1 Learning Objectives

After reading this chapter you should be able to:

1. Describe the steps for program creation and develop a simple program.

1.1 Explain what computer programs are.

1.2 Discuss the program development cycle.

1.3 Apply the program development cycle to solve a problem.

1.4 Understand the evolution of the C++ language.

1.5 Describe the basic syntax of a C++ program.

1.6 Write a simple C++ program.

1.7 Compile and execute a C++ program.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

1.1.2 What is a Program?

Imagine that you have invited your friend to your house. To help her you give her

detailed instructions on how to reach your house. Such a set of instructions might

look like the following:

 Take the bus route number 427.

Get down at “Saket”.

 Cross the road.

 Go straight for 100 meters.

 Take a left turn.

 Go about 50 meters to reach my house at 37, J Block.

For another task such as opening a bank account, you will have another plan of

action – another set of instructions to perform that task.

Just like a set of instructions followed by you to carry out a task, a program is a set

of instructions carried out by a computer to accomplish a specific task. The sequence

of program instructions, are called statements, each of which performs part of the

entire task to be executed.

If the task is simple, the computer program will be relatively simple and short. If the

task is complicated, the program will also be relatively complex and long.

So when you write a computer program, you are creating a plan of action or a

sequence of steps to accomplish a task that a computer can do.

Programming is the preparation and writing of detailed set of instructions for

computers. It is the art of writing correct and efficient computer programs.

You may have used a number of programs when you work on a computer. A

browser, such as, Internet Explorer or Firefox Mozilla, is a computer program that

helps you surf the Web. A multimedia player, such as RealPlayer or Amarok, is

another computer program that lets you play music or movies.

1.1.2.1 Creating Computer Programs

A program has to be written in a language that can be understood by a computer.

Programmers write their programs in a high level programming language such as

C++, FORTRAN or Java and then use a compiler to translate their code into machine

language code that will run on the machine they are using.

In these lessons you will learn how to develop your own computer programs in a

language called C++.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

 Figure 1.1: From a Problem to a Program

Each programming language has its own specific syntax. If you don’t write your

program with the correct syntax, it will not work. Therefore, to write a C++ program

you need to learn its syntax.

For example, one of the syntax rules for C++ is:

 “Every statement must end with a semi colon.”

We will write a program and the syntax of C++ with simple structured C++

programs and build object oriented programs in further lessons.

Value addition: Did you Know?

Heading text: Evolution of C++

C++ was developed by Bjarne

Stroustrup of AT&T Bell Laboratories,

Murray Hill, New Jersey in the early

1980's, and is a superset of the C

language. Stroustrup originally

named the language C with Classes. It

was renamed C++ in 1983.

C++ evolved from C. C was developed

after the language called B (designed

by Ken Tompson in 1970). B itself came

from another language called BCPL.

BCPL was developed in 1967 by Martin

Richards as a language for writing

operating systems software and
compilers.

C++ allows programmers the ability to comprehend and manage large C

programs. It also enables programmers to write reusable code. It is widely
used in the software industry as well as for hardware design.

Problem

Specification

Plan of

Action

High level

Programming

Language
Machine

Code

Executable

Code

English
C++ Object

Code

Machine

Instructions

P
en

 /
 p

ap
er

E
d
it

o
r

C
o
m

p
il

er

L
in

k
er

HIGH LEVEL, MACHINE INDEPENDENT LOW-LEVEL, MACHINE SPECIFIC

Bjarne Stroustrup

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

ANSI C++

The American National Standards Institution (ANSI) provides standard

definitions of many programming languages, including C and C++. A program

written only in ANSI C++ is portable – that is, it is guaranteed to run on any

computer whose supporting software conforms to the ANSI standard. In

practice most versions of C++ include ANSI C++ as a core language, but also

include extra machine-dependent features to allow smooth interface with

different computers' operating systems. These machine dependent features

should be used cautiously.

Source: Self made

For image: http://www.cpptutor.com/evolution-of-c++.htm

1.1.2.2 Program Development Cycle

Before you write a program, you have to devise a plan of action to solve the given

problem. A general problem solving strategy is as below:

1. Analyze the problem - Understand the problem by determining the

information that is available, what results are desired and how to proceed to

get those results.

2. Design a solution - Provide step by step instructions to solve the problem.

3. Code the program – Write program code in a high level language to

implement the design created in the previous step.

4. Test the program – Run the program to verify that the program solves the

given problem.

If you discover a flaw in one of steps, maybe your program did not give the right

result, you will need to return to a previous step and redo the task. This process of

analysis, design, coding and testing is known as the program development cycle.

Figure 1.2 Program Development Cycle

1.1.3 Basic Programming Concepts

ANALYZE

CODE

TEST

DESIGN

http://www.cpptutor.com/evolution-of-c++.htm

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Now that you know the steps to go from the specification of a problem to the

development of a program to solve the problem, let’s begin by writing a simple

computer program. This program will introduce you to the basic syntax of a C++

program.

1.1.3.1 A Simple Program

We will start with a program that prints a welcome message when it is executed. The

steps for this consist of just one instruction:

 Display “Hello World”

These steps must now be coded in C++. The “Welcome Message” C++ program is

coded as below:

Line

Number

Program Code

1.
2.
3.
4.
5.
6.
7.

#include <iostream>

using namespace std;

int main()

{

 cout << “Hello World!”;

 return 0;

}

Let us now understand each line in the program code one by one:

1. This statement is an include directive statement. It tells the compiler and the

linker that the program will need to be linked to a library of routines that

handle input from the keyboard and output to the screen. The library file is

enclosed within angular brackets. In this case it is “iostream”.

2. This statement is a using directive statement. It tells the compiler and the

linker that the program will be using names that have a meaning defined for

them in the “std” namespace. The latest versions of the C++ standard divide

names (e.g. cin and cout) into sub-collections of names called namespaces.

3. A C++ program consists of a collection of functions each of which is a group

of statements written to perform a specific task. A function is identified by a

function name and a function body. The function name is identified by a word

followed by round brackets. The body is enclosed within a pair of curly braces.

main is the name of a special function that every program in C++ must have.

When you run a program, the statements in this function are executed first.

4. The main function’s body is enclosed within curly braces. The opening curly

brace defines the beginning of a function.

5. This is the statement that does the actual task of the program. It prints the

string “Hello World” on the screen. A string is a sequence of characters that is

typed within double quotes.

6. This statement tells the computer to return from the main function with an

integer value 0 to indicate successful termination. The “int” before the main

function name tells that an integer value must be returned by this function.

7. This is how a function ends. The closing curly brace defines the end of a

function.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

NOTE: Older compilers do not support namespaces. If you are using an old compiler

(that is, one that does not support ANSI C++) replace the first two lines in the

program with

 # include <iostream.h>

Value addition: Common Coding Errors

Heading text: BEWARE!!
 C++ is case sensitive – follow the lowercase and uppercase exactly as

it is given in the program

 Don’t forget to put a semicolon at the end of a statement.

 Make sure pairs of curly braces match in your program.

Source: Self made

1.1.3.2 Running a C++ Program

Once you have written the code for the “Welcome Message” program, you will need

to compile and link it so that an executable file can be created. To run your program,

you will have to run the executable file.

Depending on your computer and your compiler, the process of running your

program will vary.

Windows Environment

You can use the Dev-C++, Turbo C++ or the Borland C++ Integrated Program

Development Environments (IDEs). They provide a built-in editor and a menu bar for

creating a new file, editing a program, saving, compiling and then running the

program.

Following are the steps to create the “Welcome Message” program and execute it

with the Dev-C++ IDE:

1. Click the File  New option from the Menu Bar.

Figure 1.3 - Creating a new file

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

2. Type the program.

Figure 1.4 Editing a Source File

3. Click the File  Save option from the Menu Bar.

Figure 1.5 Saving a File

4. Save the program as “hello.cpp”. The cpp extension tells the computer that

this file is a C++ source file.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Figure 1.6 Naming the Source File

5. Click the Execute  Compile option from the Menu Bar.

Figure 1.7 Compiling the Program

6. If there are no errors in your program, you will see the following screen. Click

on the Close button.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Figure 1.8 Compilation Completed

7. Click the Run option from the Menu Bar to execute your program.

Also, an executable file named “hello.exe” will be created in the same

directory as your program. You can execute this file from the command

prompt by typing its name.

 Figure 1.9 - Program in Execution

That’s it!! If you have followed the instructions carefully, you will see the words

“Hello World!” on your screen.

Congratulations, you are now a programmer!

UNIX/ Linux Environment

You can use the g++ compiler. This is a free compiler available for all UNIX/ Linux

platforms.

Following are the steps to create the “Welcome Message” program and execute it:

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

1. Type the program in any word editor (you can use ed, emacs or vi).

2. Save the program as “hello.cpp”. The cpp extension tells the computer that

this file is a C++ source file.

3. Compile the program with the following command typed at the UNIX prompt.

g++ hello.cpp –o hello

4. If you did not make any errors while typing, the executable file “hello” should

be created.

5. Type “hello” at the UNIX prompt to run this file.

Value addition: Screenshots

Heading text: “Welcome Message” program on Linux

 Editing the program with the “vi” editor

Compiling the program with the g++ compiler

Executing the program

Source:Self made

1.1.3.3 Commenting Your Code

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

The program that you saw in the last section is a correct program, it runs

successfully. However, if another programmer or a user were to read the program,

they wouldn’t understand what this program does.

It is a good idea to document your program by providing explanatory notes for

portions of the code within the program. This is especially useful in the real world,

where large programs are written by one programmer and maintained or enhanced

by other programmers.

These explanations can be written in a program via comments. Comments can be

placed in a C++ program in the following two ways:

 Placing a special set of characters (// - two consecutive forward slashes)

before any line in the code.

 Placing text to be commented between the symbols /* and */

The former method is used for single line comments while the latter is generally

preferred for multiple line comments.

Line

No.

Program Code

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

11.

12.

13.

14.

15.

/*

This Program prints “Hello World” on the

screen

Author: Rakhi Saxena

Date: 01/04/2010

*/

#include <iostream>

using namespace std;

int main()

{

 cout << “Hello World”;

 return 0;

 // Return 0 for successful termination

}

Comments are ignored by the compiler at compile time. They are also ignored by the

computer when the program is run.

Value addition: Style Tips

Heading text: STYLE TIP!!
It is a good idea to place the following two types of comments in your

program

1. Header Comments – These are written at the beginning of a

program/ module and include information like purpose of the module,

author, version, and so on.

2. In line Comments – These are written inside the program and

explain the purpose of specific parts of the code.

 A Multi line
comment

A Single

line

comment

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Source: Self made

 1.2 Variables and Constants

In the previous section, you learnt how to write a C++ program and how to execute

the code. In this section you will learn to write simple programs that do a little more

than print a welcome message. You will learn the basic building blocks that form the

structure of almost all computer programs – data input statements, data processing

statements, data output statements, program variables and constants. You will learn

to assign and reassign values to variables.

These concepts will help you develop programs that take some input data, process it

and display the processed data. You will also explore a program that exchanges the

values of two variables with the help of a temporary variable.

1.2.1 Learning Objectives

After reading this chapter you should be able to:

1. Describe the structure of a C++ program.

2. Write a program that performs data input, processing and output.

3. Define and use program variables.

2.1 Perform variable assignment and reassignment.

2.2 Exchange the value of variables using a temporary variable.

4. Define and use literal, defined and memory constants.

1.2.2 The Structure of a C++ Program

You have seen a simple C++ program in the last chapter. Figure 1.10 shows the

basic structure of a C++ program.

 Figure 1.10 Basic Structure of a C++ Program

#include <iostream>

using namespace std;

int main()

{

 Statement 1;

 Statement 2;

 …

 Statement n;

 return 0;
}

Name of header file that

contains definitions of
modules needed by main

The main()

function returns
an integer value

The namespace

identifies the set

of names that are

used in main

Body of the

main function

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Most often, the statements in a computer program perform three basic tasks:

 Data Input

 Data Processing

 Data Output

The word data means numbers, words or in general any symbols that are processed

by a program.

In the next section, we will develop a program that performs all these three tasks.

1.2.2.1 Data Input, Processing and Output

Imagine that you have just got your results (hope you did well!) and now you wish

to compute the percentage you scored in your exams.

You could impress your friends by writing a computer program that allows your

friend to input their obtained marks and the total marks, then performs the steps

necessary to calculate percentage and displays the result.

Figure 1.11 Percentage Calculator Program

Value addition: Animation

Heading text: Data Input, Processing and Output
The instructions for a computer program to calculate percentage will be as below:

Source: Self made

DATA INPUT

DATA PROCESSING

DATA OUTPUT

1. Prompt the user for marks obtained in the exam.

2. Prompt the user for total marks.

3. Calculate

 percentage = marks obtained / total marks * 100.

4. Display the percentage.

obtained_marks

total_marks

percentage

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Data Input: This part of a program brings in data from an outside source into a

program. Most often, this data is typed at the computer keyboard by a user of the

program.

The “cout <<” statement in C++ is used to prompt the user to enter some data. The

“cin >>” statement causes the program to wait until the user types in something.

For example, if you want to ask the user to enter the marks obtained, you would

write,

cout << “Enter the marks obtained:”;

 cin >> obtained_marks;

Here, obtained_marks is a placeholder for whatever value the user enters at the

keyboard.

Similarly, to get the total_marks from the user you would write,

cout << “Enter the total marks:”;

cin >> total_marks;

Again, total_marks is a placeholder for whatever marks the user enters at the

keyboard.

Placeholders are actually called variables in C++. We will learn more about them in

the next section.

Data Processing: This part of the program takes the input data and transforms it

according to how the program is defined.

For example, to calculate the percentage from the obtained_marks and the

total_marks, you would write,

 percentage = obtained_marks/total_marks * 100.0;

Data Output: This part of the program displays the desired results.

For example, to display the percentage the friend scored, you would write,

 cout << “Percentage scored:” << percentage;

Value addition: Source Code

Heading text: Percentage Calculator Program
#include <iostream>

using namespace std;

int main(void)

{

 int obtained_marks, total_marks;

 float percentage;

 cout << "Enter the marks obtained:";

 cin >> obtained_marks;

 cout << "Enter the total marks:";

 cin >> total_marks;

 percentage = 100.0 * obtained_marks/total_marks;

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

 cout << "Percentage scored:" << percentage;

 return 0;

}

Source: Self made

Value addition: Program in Execution

Heading text: Percentage Calculator Program

Source: Self made

Value addition: Style Tips

Heading text: STYLE TIP!!
1. Use Input Prompts – Whenever you want the user to input some

data, always provide a prompt telling the user that data is needed and

explain what kind of data is required. If you do not prompt the user,

the user will not know that execution has paused for user input and

might just think that the program has finished execution.

 Always use a cout statement before a cin statement.

2. Multiple Input Prompts - If you want multiple prompts from the

user, you can use multiple cin statements. However, if you want, you

can ask for multiple inputs with one cin statement also.

 For example, if you want the user to enter three numbers, you can

 write

 cout << “Enter three numbers:”;

 cin >> number1 >> number2 >> number3;

 The user can now enter three numbers on the same line separated by

 blank spaces. The first number entered will be assigned to the variable

 number1, the second to number2 and the third to number3.

Source: Self made

1.2.3 Program Variables

The placeholders in the Percentage Calculator program are called program variables

in C++. A variable is a quantity whose value can change during program execution.

When we write a program, most of the time we don’t know the actual numbers or

other data that the user will enter when the program is executed. That is why we use

variables to assign the input data.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

A variable is called so because its values can vary. When the same program is

executed again, the same variable can take another user input value.

In the price conversion program, marks_obtained and total_marks are input

variables and percentage is an output variable.

Technically, a variable is the name for a storage location in the computer’s internal

memory. The value of the variable is the contents at that location. You can imagine

storages location as a set of lockers. Each variable can be thought of as the name

printed on the locker. The value of the variable can be thought of as the contents of

the locker.

Variables in C++ have to be declared and defined before they can be used. A

declaration is used to name a variable. Definitions are used to create the variable

object. Most often variables are declared and defined in the same statement. For

example,

 int marks_obtained;

declares and defines the variable marks_obtained.

The type of the variable has to be specified at the time of declaration. The type of

the variables marks_obtained and total_marks in our percentage calculator program

is int. This means that these variables are of the type integer. Specifying the type

Value addition: Animation

Heading text: Variables

Source: Self made
For image http://www.clker.com/clipart-14004.html

marks
_obtained

300

http://www.clker.com/clipart-14004.html

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

tells the compiler how much memory space to reserve for this variable. It also means

that only integer values can be stored in this variable.

You will read about other data types in the next chapter.

Value addition: Did you Know?

Heading text: C++ Rules for variable names
1. Variable names must be one word. Spaces are not allowed in variable

names. Underscores are allowed.

“total_marks” is fine but “total marks” is not.

2. Variable names can begin with either an alphabetic character or an

underscore.

3. Variable names can consist of only alphabets, digits, and underscore.

4. Special characters, arithmetic operators, punctuation symbols, such as

#, ^, and so on cannot be used in a variable name.

5. There are some reserved words in C++ that cannot be used as

variable names.

6. A variable name declared for one data type cannot be used to declare

another data type.

Source: Self made

1.2.4 Program Constants

Constants are data items that have fixed value. Their value does not change during

program execution. Constants, like variables, have a data type.

In the statement,

number1 = number2 * 100;

the number 100 is an integer constant.

Value addition: Style Tips

Heading text: STYLE TIP!!
1. C++ is a case-sensitive language. Variable names written in capital

letters differ from variable names with the same spelling but written in

small letters. For example, the variable name “percentage” differs

from the variable name “PERCENTAGE” or “Percentage”.

2. Variable names should be meaningful! The name should indicate the

use of that variable. Single character variable names such as i, j, and

so on, should be used only for temporary variables.

3. You can define multiple variables of the same type in one statement by

separating each with a comma. For example, you can define three

integer variables as below:

 int num1, num2, num3;

Source: Self made

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Integer constants can be represented in -

 Decimal notation - represented with a number, for example, 100.
 Octal notation - represented with the number preceded by a zero character,

for example, 08.
 Hexadecimal notation - represented with the number preceded with the

characters 0x, for example 0x12.

Value addition: Did you Know?

Heading text: More on Constants
You can define three types of constants in C++:

1. Literal Constants – an unnamed constant. It is a data value that you

type in a program. Such constants can be used to initialize variables or

in program statements. For example,

 int age = 42;

 area = 3.14 * radius * radius;

 In these statements 42 and 3.14 are literal constants.

2. Defined Constants - a symbolic or named constant. It is defined

using a define preprocessor directive. For example,

 #define PI 3.1417

A define preprocessor directive is usually written at the beginning of a

program. It tells the compiler to replace all occurrences of the

identifier PI in the program with 3.1.417

It is common convention to write defined constants in uppercase.

A defined constant is used in a program like a variable name:

 area = PI * radius * radius;

3. Memory Constants – a named constant. It is defined using a const

type qualifier in C++ to tell the compiler that value of this data item

cannot be changes during program execution. For example,

 const int pi = 3.1417;

 A memory constant has to be assigned a value at the time of

 definition.

Source: Self made

1.2.5 Variable Assignment and Reassignment

Variables can also be initialized at the time of declaration. For example, the

statement,

 int num1 = 10;

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

declares an integer variable named num and tells the compiler that when this

variable is created, the contents of the memory location for this variable should take

the integer value 10.

When we assign values to a variable using the assignment operator (equals sign), it’s

called an assignment.

Variables can be assigned values in program statements also. For example,

 num2 = num1 * 53;

This statement multiplies the value of num1 with 53 and assigns the result to num2.

If the value of num1 at the time of execution of this statement was 10, num2 now

takes the value 530. The value of num1 remains unchanged.

Variables can also be reassigned values. For example, the following statement

replaces the existing value of variable num2 with the value 62.

 num2 = 62;

The value in the memory location allocated to num2 is erased and replaced with the

value 62.

An assignment statement thus assigns the value of the expression to the right of an

equals sign to the variable on the left of an equals sign.

Value addition: Did you Know?

Heading text: A Special Assignment!
The following statement may look a little strange:

 counter = counter + 1;

Lets see how this statement is executed:

 First, the right side of the assignment statement is evaluated.

 1 is added to the current value of counter.

 The result is then assigned to the variable on the left, counter.

The net result of this statement is to increment the value of counter by 1. For

example, if the value of counter before execution of the statement was 12,

after execution, the value of counter will be 13.

Source: Self made

1.2.6 Exchanging the Value of Variables

Now that you know how to assign values to variables, let us write a program that

exchanges the values of two variables.

Imagine you have defined two integer variables x and y and initialized them with

values 24 and 62 respectively.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

 int X = 24, Y = 62;

Now we want that the values of the variable to be exchanged, that is, we want X

should take the value 62 and Y should take the value 24.

Can we write the following two statements to perform the exchange?

 X = Y;

 Y = X;

Let us see what happens. The first statement assigns the value of Y to X : so X takes

the value 62.

 Now, Y takes the value of the variable X.

This is not what we wanted!! Both the variables now have value 62. What has

happened is that the first step erased the previous value of X and replaced it with

the value of Y. The original value in X was lost!

So what can be done? One solution is to store the original value of X in a temporary

variable, let us call it Z, before it is erased. We first write the value of X into Z. Then

copy value of Y to X and lastly replace the contents of Y with the value in Z.

 int X = 24, Y = 62, Z;

 Z = X;

 X = Y

 Y = Z;

X 24

 62

Y 62

 62

Y = X

X 24

 62

Y 62

X = Y

X 24 Y 62

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

So we see that a simple task such as exchanging or swapping the two variables

needed another temporary variable to solve the problem.

X 24

 62

Z 24

Y 62

 24

Step 1: Z = X

Step 2: X = Y

Step 3: Y = Z

X 24

 62

Z 24

Y 62

Step 1: Z = X

Step 2: X = Y

X 24

Z 24

Y 62

Step 1: Z = X

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

Value addition: Source Code

Heading text: The Swap Program
#include <iostream>

using namespace std;

int main()

{ int x, y, z;

 cout << "Enter the value of the first variable: ";

 cin >> x;

 cout << "Enter the value of the second variable: ";

 cin >> y;

 cout << "Values before Swapping"<< endl;

 cout << " X = " << x << endl; //endl causes next cout

 //to print in the next line

 cout << " Y = " << y << endl;

 z = x; // copy value of x into z

 x = y; // replace value of x with value of y

 y = z; // copy value of z into y

 cout << "Values after Swapping"<< endl;

 cout << " X = " << x << endl;

 cout << " Y = " << y << endl;

 return 0; // Return 0 for successful termination

 }

Source: Self made

Value addition: Program in Execution

Heading text: The Swap Program

Source: Self made

Value addition: Common Coding Errors

Heading text: Program variables and constants

1. Using a space when declaring a variable name.

2. Forgetting to declare a variable before using it.

3. Declaring multiple variables in sequence. For example,

 int num1, int num2; // Wrong, compiler will give error

 int num1, num2; // Right

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

4. Declaring two variables of different types on the same line. For

example,

 int num1, float num2; // Wrong, compiler will give error

 int num1; // Right

 float num2; // Right

5. Initializing two variables by using one assignment statement

 int num1, num2 = 10; // Wrong, compiler will not give error, but

 only value of num2 is initialized, not of

 num1.

 int num1 = 10; // Right

 int num2 = 10; // Right

Source: Self made

 Summary

 A program is a set of instructions written to solve a specific problem.

 The program development cycle consists of the following steps:

o Analyze the problem

o Design the solution

o Code the program

o Test the Code

 A program is written in a high level language such as C++ and must be compiled

and linked to execute it.

 You must learn the syntax of a programming language to write a program in that

language.

 The instructions written in a C++ program are called statements. Each statement

in C++ must end with a semi colon.

 A program is built from a collection of functions.

 main() is a special function that all C++ programs must have. This is the function

from where the program begins execution.

 To run a program, you need to type it in an editor, then compile and link it to

create an executable file.

 Most often a computer program performs three basic tasks: Data Input, Data

Processing, and Data Output.

 Data input statements transmit data from an outside source into a program.

 Processing statements manipulate data to obtain the desired results.

 Data output statements display the results on the screen.

 The word data means numbers, words or in general any symbols that are

processed by a program.

 The “cout <<” statement in C++ can be used to prompt the user to enter some

data.

 The “cin >>” statement can be used to accept the value that a user enters. It

causes the program to wait until the user types in something.

 A program variable is a named storage location in memory. Its value can change

during program execution.

 A variable has a data type and must be declared and defined in a program before

it can be used.

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

 A program constant is a fixed value that cannot change. Three types of constants

can be defined – literal constants, defined constants and memory constants.

 An assignment statement assigns values to a variable using the assignment

operator (equals sign).

 Variables can be reassigned values during program execution.

 Exercises

1.1.1 List the steps in the program development cycle.

1.1.2 Write a C++ program that prints “Hello World” five times.

1.1.3 What will be the output of the following program?

#include <iostream>

using namespace std;

int main()

{

 cout << “It’s a Small World After All!!”;

 return 0;

}

1.1.4 Identify three errors in the following program:

 #include <iostream.h>

 using namespace std;

 int main

 {

 cout << “Hello World”

 return 0;

 }

1.2.1 Write a pair of statements that prompts for and inputs a user’s age.

1.2.2 Write a C++ program that computes and displays the strike rate of a cricket

 player in a match when the user inputs the number of runs scored and number

 of balls faced. (Hint: StrikeRate = RunsScored / BallsFaced * 100)

1.2.3 Write a C++ program to exchange the value of two variables without using a

 temporary variable. (Hint: Use arithmetic operations)

1.2.4 What will be the output of the following program:

#include <iostream>

using namespace std;

int main()

{

 int x = 10, y = 20;

 cout << “ X = “ << x << endl;

 cout << “ Y = “ << y << endl;

 x = y;

 y = x;

 cout << “ X = “ << x << endl;

 cout << “ Y = “ << y << endl;

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

 return 0;

}

1.2.5 Identify three errors in the following program fragment:

 int main

 {

 int percent age;

 int percentage;

 int percentage = 100;

 int num1 = 2, float num2 = 20;

 }

 Glossary

Comment: Text inserted into a program for explanatory purpose, but ignored by the

computer when the program is executed.

Compiler: A program that translates a source program written in some high-level

programming language into machine code for some computer.

Constant: A fixed value that cannot change. Three types of constants can be

defined – literal constants, defined constants and memory constants.
Defined Constant: a symbolic or named constant; It is defined using a define

preprocessor directive.

Function: A group of statements written to perform a specific task. A function is

identified by a function name and a function body. The function name is identified by

a word followed by round brackets. The body is enclosed within a pair of curly

braces.

Literal Constant: an unnamed constant; It is a data value that you type in a

program

Machine language: A processor specific set of binary codes that correspond to

actions to be taken by the processor of a machine.

Memory Constant: a named constant; It is defined using a const type qualifier in

C++ to tell the compiler that value of this data item cannot be changes during

program execution.

Program: A set of instructions carried out by a computer to accomplish a specific

task.

Program Development Cycle: The process of analysis, design, coding and testing

a program.

Programming: is the preparation and writing of detailed set of instructions for

computers.

return: The return statement causes a function to return immediately.

String: A sequence of characters that is typed within double quotes.

Syntax: The syntax of a computer language is the rules of its usage.

References

1. Works Cited

2. Suggested Reading

An Introduction to Programming

 Institute of Lifelong Learning, University of Delhi

1. B. A. Forouzan and R. F. Gilberg, Computer Science, A structured Approach

using C++, Cengage Learning, 2004.

2. R.G. Dromey, How to solve it by Computer, Pearson Education

3. E. Balaguruswamy, Object Oriented Programming with C++ , 4th ed., Tata

McGraw Hill

4. G.J. Bronson, A First Book of C++ From Here to There, 3rd ed., Cengage

Learning.

5. Graham Seed, An Introduction to Object-Oriented Programming in C++,

Springer

6. J. R. Hubbard, Programming with C++ (2nd ed.), Schaum’s Outlines, Tata

McGraw Hill

7. D S Malik, C++ Programming Language, First Indian Reprint 2009, Cengage

Learning

8. R. Albert and T. Breedlove, C++: An Active Learning Approach, Jones and

Bartlett India Ltd.

3. Web Links

1.1 http://www.cprogramming.com/begin.html

1.2 http://www.cplusplus.com/doc/tutorial/program_structure/

1.3 http://cnx.org/content/m11863/latest/

1.4 http://sourceforge.net/projects/dev-cpp/

1.5 http://bloodshed-dev-c.en.softonic.com/

1.6 http://www.uniqueness-template.com/devcpp/

1.7 http://gcc.gnu.org/

1.8 http://www.programmingforums.org/thread7219.html

1.9 http://pages.cs.wisc.edu/~beechung/ref/gcc-intro.html

1.10 http://www.cplusplus.com/doc/tutorial/variables/

http://www.cprogramming.com/begin.html
http://www.cplusplus.com/doc/tutorial/program_structure/
http://cnx.org/content/m11863/latest/
http://sourceforge.net/projects/dev-cpp/
http://bloodshed-dev-c.en.softonic.com/
http://www.uniqueness-template.com/devcpp/
http://gcc.gnu.org/
http://www.programmingforums.org/thread7219.html
http://pages.cs.wisc.edu/~beechung/ref/gcc-intro.html
http://www.cplusplus.com/doc/tutorial/variables/

