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1. Learning Outcomes 

 
This lesson will help  us to understand the derivation of the formulas and 

their applications for  computing  

ü The volume of a solid of revolution using the formula for the volume 

of a right circular cylinder (a disk), a shell or the known area of its 

cross -section.  

ü The surface area of a solid of revolution using the formula for the 

surface area of a right circular cylinder.  

ü The length of a curve using the distance formula for the length of a 

line segment.  

Moreover,  we  will be able to learn how  the se formulas are applied to 

various practical problems that can be modeled on solids of revolution or 

curves.  

2. Introduction: 

The ñinventionò of calculus took place around seventeenth century as a 

result of the attempt by two great mathematicians, Sir Isaac Newton and 

Gottfried Wilhelm von Leibniz , to understand and solve the following two 

fundamental problems :  
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(1)  Given a plane curve ()y f x= , how to determine the slope of a 

tangent line at any point on the curve . 

(2)  Given a plane region which is bounded not by straigh t line 

segments but by curves, how to find the area of the enclosed 

region.  

These two problems held the attention of several mathematicians in 

Europe during that time, but it was the pioneering work of Newton and 

Leibniz which  not only resolved the above p roblems but also  gave a 

powerful tool in the hands of sci entists to use them for research in 

mathematics, physics, economics, engineer ing, etc. These two men had  

clearly recognized the strong relationshi p between the two problems, and  

presented the theory  in a unified form  which we now study in calculus . 

We are familiar with a few situations in which we have used the  concepts 

taught in  calculus. For example, in school  mathematics , we observed that  

(a)  The slope of a line can be determined  without calculus . But  to 

find  the slope of a curve ( )y f x= , we  need  
dy

dx
 , that is , the 

concept of differentiation  in calculus . 

(b)  The area of a  rectangle or any polygon can be computed  without 

calculus . But t o compute  the  area under a ny  curve ()y f x= , 

where f is defined on  [ , ]a b , one  need s the integration formula

( )

b

a

f x dxñ , that is , the concept of integration . 

However, a proper understanding of the role of calculus in solving the 

above two problems was beyond the scope of our study in school. Our 

objective  here  is to understand the basic principle behind  the  

development of integration formula  in (b) so that we are able to  derive  

more general formulas of integration for  fi nding area between two curves, 

length of a curve, volume and surface area of some special types of three 

dimensional  solids , etc . Understanding these formulas  inv olves  a general 

strategy ïuse  pre -calculus mathematics to develop  the basic idea , 

understand a summation process  for finding the approximate volume, 

area or length, and then apply  the  limit concept  from calculus to obtain 

the exact formula  as a definite integral .  

3. Motivation: 

We begin with a sketch of  mathematical justification of the definite 

integra l formula in (b)  above . Recall that if f  is a non -negative and 
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con tinuous function on an interval  [ , ]a b , then  the definite integral in the 

equation  

( ) ... (1)

b

a

A f x dx=ñ  

represents  th e area A  of the plane region R  bounded above by the graph 

of f , below by the x -axis, on the left by the vertical line x a=  and on the 

right by the vertical line x b=  (see figure below) . 

 

To see the validity of the formula given in (1), we divide the interval [ , ]a b

into n  sub - intervals, say  

 0 1 1 2 2 3 1[ , ], [ , ], [ , ], ... ,[ , ]n na x x x x x x x x b-= =  

where the width of thi  sub - interval  is 1 , 1,2,...,i i ix x x i n-- =D = . Then we 

sketch a representative rectangle (cross section of the plane region 

perpendicular to the x -axis) over each sub - interval [ ]1,i ix x-  
of width ixD

and height ( *)if x , where *ix  is any point in the thi  subinterval  1[ , ]i ix x- , 

1,2,...,i n= . See figures below.  

 

The area of this representative rectangle is  

 (height)(width)=[ ( *)]i i iA f x xD = D. 

By adding the areas of these n  rectangles, we obtain the approximate 

area of the given region under the curve as  sum of these representative 

elements, that is  

1

[ ( *)] .
n

i i

i

f x x
=

Dä  
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Note that if we decreas e the size (width) of each sub - interval, we  get a 

better  appr oximation of  the exact area under the curve. Thus,  to obtain 

the exact area A , we take the limit as n­¤ in such a way that the length 

of the larg est su b- interval reduces to zero. This gives us  

 
1

lim [ ( *)] ( ) .

bn

i i
n

i a

A f x x f x dx
­¤

=

= D =ä ñ  

provided the limit exists. I f we drop the assumption that f  is non -

negative, the n equation  (1) represents the net signed area between the 

graph of f  and the interval  [ , ]a b . Also,  the total area between the curve 

( )y f x=  and the interval [ , ]a b  is then given by  ( ) .

b

a

f x dxñ  

4. Area of a plane region between two curves:  

Now, w e extend this application of definite integrals from the  area of a 

plane region under  a curve to the area of a plane region between  two 

curves.  Consider  two non -negative functions f  and g  that are continuous 

on the interval [ , ]a b  such that the graph of g  lies below the graph  of f  

(see figure below). Then  geometrically we can observe that the area of 

the region between the  two graphs is the  area of the region under the 

graph of f  minus  the area of the region under  the graph of g .  

 

Thus, the area of the  region between two curves ( )y f x=  and ( )y g x= , 

both defined on an  interval [ , ]a b  such that ( ) ( )g x f x¢  for all [ , ]x a bÍ , is 

given by  

 [ ( ) ( )] ... (3)

b

a

A f x g x dx= -ñ . 

Again, n ote that it is not necessary that both f  and g  are non -negative. 

We can use the same integrand as in (3) to find the area between the 
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curves ( )y f x=  and ( )y g x=  as long as both f  and g  are continuous and 

( ) ( )g x f x¢  for all [ , ]x a bÍ  (see figure s below).  

 

Value Additions: 

ü Note that the integral  in (3) exists because the integrand is a 

continuous function on  [ , ]a b .  

ü If two curves intersect, then the area of a region bounded by these 
two intersecting graphs is determined by first finding the values of 

a  and .b  

ü If two curves intersect at more than two points, then to find the 

area of the region between the curves, we must find all points of 

intersection and then see which curve is above the other in each 
interval determined by these points.  

ü If  the graph of a function of y  is a boundary of the region, it is 

often convenient to use representative rectangles that are 
horizontal and find the area by integrating with respect to  y . In 

general, to determine the area between two curves, we can use  

       
2 2

1 1

[( ) ( )] [( ) ( )]

x y

x y

A top curve bottom curve dx or A right curve left curve dy= - = -ñ ñ  

        where 1 1( , )x y  and 2 2( , )x y  are adjacent points of intersection of the         

        two curves involved or points on the specified boundary lines.  

 

4.1. Solved Examples: 

Example 1. (Area of the region between two curves)  

Find the area of the region bounded by the graphs of 
20, 1, , 2.x x y x y x= = =- = + 

Solution: Let ( )g x x=- and  2( ) 2f x x= +. Then ( ) ( )g x f x¢  for all [0,1]xÍ , 

as shown in the figure below:  
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The area of the representative rectangle is  

 2

2

[ ( ) ( )]

[( 2) ( )]

[ 2] .

A f x g x x

x x x

x x x

D = - D

= + - - D

= + + D

 

Therefore, the area of the region is  

 
1

2

0

17
[ ( ) ( )] [ 2] .

6

b

a

A f x g x dx x x dx= - = + + =ñ ñ  

Example 2. (Area of a region between two intersecting curves) 

Find the area of the region bounded by the graphs of 2( ) 2f x x= -  and

( )g x x= . 

Solution: Notice that the graphs of f  and g  have two points of 

intersection (as shown in the figure below ) .  

 

To find the x -coordinates of these points, set ( ) ( )f x g x=  and then solve 

for x . So, we have  

 2 22 2 0 2, 1x x x x x- = Ý + - = Ý =-. 
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This gives us 2a=- and 1b= . Since ( ) ( )g x f x¢  for all [ 2,1]xÍ - , the 

representative rectangle has an area of  

 2[ ( ) ( )] [(2 ) ]A f x g x x x x xD = - D = - - D 

and the area of the region is  
1

2

2

9
[2 ] .

2
A x x dx

-

= - - =ñ  

Example 3. (Curves that intersect at more than two points) 

Find the area of the region between the graphs of 3 2( ) 3 10f x x x x= - -  and

2( ) 2g x x x=- +. 

(Hint: Use the figure below to obtain the required area as  24A= .)  

 

Example 4. (Comparison between horizontal and vertical 

representative rectangles) 

Find the area of the region bounded by the graphs of 23x y= -  and  

1.x y= + 

Solution: The area bounded by the given graphs is shown in the figures 

below.  

(a) (b)  
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In figure (a), l et 2( ) 3g y y= -  and  ( ) 1f y y= +. These two curves intersect 

when 2y=- and 1y= . Because ( ) ( )f y g y¢  on the interval  [ 2,1]- , the 

representative horizontal rectangle has the area  

 
2

2

(3 ) ( 1)

2 .

A y y

y y

D = - - +

= - -
 

So, we have the required area given by  

 
1

2

2

9
(2 ) .

2
A y y dy

-

= - - =ñ  

Now, using figure (b), we  can also find the area of this region by using 

integration with respect to x , but then we have to solve two integrals 

over the intervals [ 1,2]-  and [2,3]. Notice that the upper boundary curve 

has changed at 2x= . The required area by this choice of vertical 

representative rectangle must be same as computed above. We verify this 

below by computing the two integrals:  

 

( )( ) ( )( )
2 3

1 2

2 3

1 2

1 3 3 3

9
1 3 2 3 .

2

A x x dx x x dy

x x dx xdx

-

-

è ø è ø= - - - - + - - - -
ê ú ê ú

è ø= - + - + - =
ê ú

ñ ñ

ñ ñ

 

Value Additions: 

The integration formula for the area between two curves was developed 

by using a rectangle (the cross section) as the representative element 
and then integrating it over an appropriate interval.  Now,we are going to 

use the same basic principle to derive the formulas for finding the volume 
and the surface area of a solid of revolution, length of a curve, etc.  

 

5. Volume of a solid of revolution: 

Here, we will study a particular type of three  dimensional  solid, called the  

solid of revolution, the one whose cross sections are similar . Some 

examples of solids of revolution are the objects like axles, funnels, pills,  

bottles,  pistons, etc. as shown in the figure below.  
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To understand what is meant by the solid of revolution, consider a 

rectangle and revolve it about a line adjacent to one of its side. Se e figure 

on the left below.  

 

The solid that is obtained is a right circular cylinder or a disk, as shown in 

the figure above on the right. The volume of such a disk is equal to 

( )( ) 2area of disk width of disk .R wpÖ =
 
Such solids are called solids of revolution. 

In general, any  solid that is obtained by revolving a region in a  plane 

about a line  is called a solid of revolution. The line about which  the 

plane region is revolved is called the axis of revolution. Some familiar 

solids of revolution are shown in the figure s below.  
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5.1. The Disk method: 

In this method, we will see how to use the volume of a disk to find 

the volume of a general solid of revolution. Consider a solid of revolution 

formed by revolving the plane region about its axis of revolution as x -

axis, as shown in the figure below.  

 

To determine the volume of this solid, consider  a representative rectangle 

in the plane region. When this rectangle is revolved about  the  x -axis , it 

generates a representative disk whose volume is  

 2V R xpD = D. 

Approximating the volume of the solid by n  such disks of width ixD
 
and 

radius ()iR x
 
produces the volume of the solid of revolution approximately 

equal to  

 () ()
2 2

1 1

n n

i i i i

i i

R x x R x xp p
= =

D = Dè ø è øê ú ê úä ä . 

This approximation becomes better and better when n­¤ in such 

manner that the width of each representative disk approaches zero. Thus, 

we define the volume V  of the solid as  

 () ()
2 2

1

lim

bn

i i
n

i a

V R x x R x dxp p
­¤

=

= D =è ø è øê ú ê úä ñ . 

So,  to remember  the disk method of finding the volume of a solid of 

revolution , note the following flow diagram :  

 
() ()

2 22

Volume of solid of revolutRepresent ioative elemenVolu tme f dis no  k

b

i i

a

V R w V R x x V R x dxp p p= ­ D = D ­ =è ø è øê ú ê úñ
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Similarly, if the axis of revolution is vertical, the formula for the volume of 

the resultant solid of revolution is  (see figure below)  

 ()
2

d

c

V R y dyp= è øê úñ . 

 

Value Addition: 

One of the easiest applications of the disk method involves a plane region 

bounded by the graph of a function ()y f x=  and x -axis. If the axis of 

revolution is x -axis, then the radius ()R x
 

of the representative disk is 

simply  ()f x . 

 

5.1.1. Solved Examples: 

Example 5. (Using the disk method) 

Find the volume of a solid formed by revolving the region bounded by the 

graph of () sinf x x=  and the x -axis  ( )0 x p¢ ¢  about the x -axis.  

Solution: The plane region bounded by the graph of f  and the x -axis is 

shown below in  figure (a).  

(a)  (b)      

From the representative rectangle, the radius of the solid of revolution is  

 () () sinR x f x x= = . 
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So, the volume of the solid of revolution (b) is  

 () ( )
22

0 0

sin sin 2 .

b

a

V R x dx x dx xdx

p p

p p p p= = = =è øê úñ ñ ñ  

Example 6. (Revolving about a line that is parallel to a coordinate 

axis) 

Find the volume of the solid formed by revolving the region bounded by 

the graphs of  

 () ()22    and   1f x x g x= - = 

about the line 1y= .  

Solution: The pla ne region between the graphs of f  and  g , and the solid 

of revolution obtained by revolving the region about the line 1y= or 

() 1g x =
 
is shown below.  

 

First, by putting () ()f x g x= , we obtain that the two graphs intersect when  

 2 22 1 1 0 1.x x x- = Ý - = Ý =° 

Thus, the plane region lies between the graphs of f  and g  for all  

[ ]1,1 .xÍ -
 

To find the r adius, we see that  

() () () ( )2 22 1 1R x f x g x x x= - = - - = -. 

Thus,   the volume of the solid of revolution is obtained as follows:  

 () ( )
1

22 2

1

16
1 .

15

b

a

V R x dx x dx
p

p p
-

= = - =è øê úñ ñ  
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5.2. The Washer method: 

Consider the solid of revolution that is obtained by revolving a rectangular 

plane region  about a line in its plane in which  the lin e does not intersect 

the region, as shown in the figure below.  

 

This solid of revolution  is called a washer. Now , in washer  method, we 

use  this washer as the representative element . I f r  and  R  are the inner  

and outer radii of the washer and  w  is the width of the washer, the 

volume is given by  

 ( )2 2Volume of washer R r wp= - . 

To see how this representative element can be used to find the volume of 

a solid of revolution,  consider a region as  shown in the figure below  on 

the left .  

 

If the region is revolved about its axis of revolution, the resulting solid of 

revolution is a solid with a hole (see figure on the right above) . As 

shown in the  disk method, the volume  of this solid, called the volume by 

washer method,  is then  given by  

 () ()( )2 2

.

b

a

V R x r x dxp= -è ø è øê ú ê úñ  

Value Addition: 

The integral involving the inner radius represents the volume of the hole.  
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5.2.1. Solved Examples: 

Example 7. (Using the washer method) 

Find the volume of the solid formed by revolving the region bounded by 

the graphs of y x=  and 2y x=  about the x -axis.  

Solution: The plane region and the solid of revolution is shown in the  

figure below.  

 

One can see from the figure on the left that the outer radius is ()R x x=  

and the inner radius is () 2r x x= . The point of intersection of the graphs of 

y x=  and 2y x=  is obtained by putting 2x x=  which on solving gives 

real roots as 0,1x= . This gives us the interval on the x -axis as [ ]0,1  about 

which the revolution is made to obtain the solid as shown in the figure on 

the right. Thus, using washer method and integrating between 0  and 1 , 

the required volume of the solid of revolution  is 

 

() ()( )

( ) ( )

( )

2 2

1
2 2

2

0

1

4

0

3
.

10

b

a

V R x r x dx

x x dx

x x dx

p

p

p

p

= -è ø è øê ú ê ú

è ø= -
é ùê ú

= -

=

ñ

ñ

ñ

 

Example 8. (Integrating with respect to y , the two integral case) 

Find the volume of the solid formed by revolving the region bounded by 

the graphs of 2 1y x= +, 0y= , 0x=  and 1x=  about the y -axis.  
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Solution: The plane region and the solid of revolution is shown in the 

figure below.  

 

From the figure on the left, we can see that the outer radius is () 1.R y =
 

To find the inner ra dius, we proceed as follows.  When  0 1y¢ ¢, the inner 

radius is () 0r y =  but when 1 2y¢ ¢, the inner radius is determined by the 

equation 2 1y x= +, that  is () 1r y y= -. This gives two different inner radii 

as follows:  

 ()
0, 0 1,

1, 1 2.

y
r y

y y

¢ ¢ëî
=ì

- ¢ ¢îí

 

Thus, we have to use two integrals to find the required volume  V . 

Applying  the washer method, we obtain  

 

( ) ( )

( )

1 2
2

2 2 2

0 1

1 2

0 1

1 0 1 1

2

3
.

2

V dy y dy

dy y dy

p p

p p

p

è ø= - + - -
é ùê ú

= + -

=

ñ ñ

ñ ñ  

Example 9. (Application in manufacturing) 

A manufacturer drills a hole through the center of a metal sphere of 

radius 5 inches. The hole has a radius of 3 inches. Find the volume of the 

resulting metal ring.  

Solution: The metal sphere of radius 5 inches can be obtained by 

revolving a circle of radius 5 inches  about its diameter . Let us assume 

that the circle has the equation 2 2 5x y+ =. Therefore, we can  imagine the 

ring to be generated by a segment of this circle.  The solid metal sphere, 
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with center at the origin, and the plane region (the segment of the circle) 

which is revolved about x -axis to obtain the metal ring is shown in the 

figure below.  

 

Since the radius of the hole is 3 inches, we can let  3y=  and solve the 

equation 2 2 25x y+ =  to determine that t he limits of the integration as

4x=°. So , the inner and the outer radii of the washer are () 3r x =
 
and 

() 225R x x= - , respectively. Hence, by washer method, the required 

volume is given by  

 

()( ) ()( )

( ) ( ) ( )

2 2

4 42
2 2 2

4 4

25 3 16

256
.

3

b

a

V R x r x dx

x dx x dx

p

p p

p

- -

è ø= -
ê ú

è ø
= - - = -é ùê ú

=

ñ

ñ ñ  

6. Volume of a solid with known area of its cross section:  

In the disk method of finding volumes of solids  of revolution, we used  a 

circular cross section whose area is  2A Rp= . This method can be 

generalized to  find the volume of a  solid of any shape, as long as we 

know a formula for the area of an arbitrary cross section. One of the 

simple st examples of such a solid is a right  circular  cylinder , as it has 

identical circles as cross sections  at every point . Its volume is 2 ,V R hp=

where the radius of the circle is R  and h  is its height. Generalizing this 

formula to a solid which are right cylinders, that is, which have congruent 

cross sections is easy (see figure below).  
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If a right cylinder of height  (or width) h  has its cross sectional area at any 

point as  A , then  its volume is .V A h= Ö Some common cross sections are 

squares, rectangles, triangles, semicircles, trapezoids, etc. (s ee figures 

below ) . 

 

 

6.1. Method of Slicing: 

Now, to find the volume of a solid by the method of slicing, let us consider 

a solid that extends along the x -axis and is bounded on the  left and right  

by the planes that are perpendicular to the x -axis at x a=  and  x b= , 

respectively, as shown below.  

 

Assum e that its cross -sectional  area ()A x
 

is known at each x  in the 

interval  [ ],a b . We divide the solid into n  thin slices perpendicular to x -

axis of width ixD , 1,2,...,i n= . The volume of the thi  slice is , therefore , 

approximately equal to ( )*i iA x xD , where *ix
 
is an arbitrary point in the 
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sub - interval [ ]1,i ix x-  for each 1,2,...,i n= . Adding all these approximate 

volumes of slices gives the approximate volume of the solid. Finally, 

taking the limit as n­¤ in such a way that the width of each slice 

approaches zero, we get the exact volume V of the solid as  

 ( ) ()
1

lim * .

bn

i i
n

i a

V A x x A x dx
­¤

=

= D =ä ñ  

Similarly, for cross sections perpendicular to y -axis, the volume of the 

solid is given by the definite integral  

 ( ) ()
1

lim * .

bn

i i
n

i a

V A y y A y dy
­¤

=

= D =ä ñ  

Value Addition: 

Note that this method works because of the fact that a thin slice has a 
cross section that does not vary  much in size or shape, so that its volume 

is easy to approximate.  If the slices are very thin, then there is very less 
variation in its cross sections and hence the approximation is quite 

accurate. Thus, once we approximate the volumes of the slices, we can 
get the approximate volume of the solid as the sum of the volumes of all 

the slices, whose limit is the volume of the entire solid.  

 

6.1.1. Solved Examples: 

Example 10. (Using method of slicing) 

Derive the formula for the volume of a right pyramid whose altitude is h

and whose base i s a square with sides of length a . 

Solution: 

(a)  (b)  

First, note that if we take sections of the right pyramid parallel to its 

base, then all cross sections are similar, that is the shape of a square. 

Now, we introduce a rectangular coordinate system in which the y -axis 
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passes throug h the apex and is perpendicular to the base, and the x -axis 

passes through the base and is parallel to a side of the base (Fig. (a)).  At 

any  y  in the interval  [ ]0,h
 
on the y -axis, the cross section perpendicular 

to the y -axis  is a square. If s  denotes the length of a side of this square, 

then its area is 2s . By the property of similar triangles  (Figure  (b) ) , which 

is obtained by intersecting the right pyramid with the xy -plane  ( )0x² , we 

have  

 ( )
2

.
2

s h y a
s h y

a h h

-
= Ý = -  

Thus, the area ()A y
 

of the cross section at any  [ ]0,y hÍ
 

is

() ( )
2

22

2
.

a
A y s h y

h
= = -

 
The required  formula for the  volume of right pyramid 

is, therefore , 

 () ( )
2

2 2 2

2

0 0

1
2 .

3

h h
a

V A y dy h hy y dy a h
h

= = - + =ñ ñ  

Example 11. (Triangular cross sections) 

Find the volume of the solid (see figure below) whose cross sections 

perpendicular to the x -axis are equilateral triangles and the base is the 

region bounded by the lines  

 () ()1 , 1 , and 0.
2 2

x x
f x g x x= - =- + = 

(a)        (b)     

Solution: The cross sections of the solid and its triangular base in the xy

-plane is shown in the figure above. Since the lines given by f  and g  

intersect at ( )2,0 , x  varies from 0 to 2 . Therefore, the  length of the  base 

and area  ()A x
 
of  the cross section  at  each [ ]0,2xÍ  is 
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() ( ) ( )
2 2

Length of base 1 1 2
2 2

3 3
Area, base 2 .

4 4

x x
f g x

A x x

å õ å õ
= - = - - - + = -æ ö æ ö

ç ÷ ç ÷

= = -

 

The volume of the solid is , therefore,  

 () ( )
2

2

0

3 2 2
2 .

4 3

b

a

V A x dx x dx= = - =ñ ñ  

Example 12. (Circular cross sections with a circular base) 

Find the volume of the solid whose base is bounded by the circle 
2 2 4x y+ = and whose cross sections perpendicular to the x -axis are semi -

circles with diameter across the base.  

Solution: The solid and its cross section perpendicular to the x -axis is 

shown below.  

 

The area of each cross section is half the area of the circle with center at 

( ),0x  and radius 24 x- , which is obtained by solving for y  the equation 

2 2 4x y+ =. Since x  varies from 2-  to 2 , we get that the area ()A x  for 

each [ ]2,2xÍ -  is 

 () ( ) ( )
2

2 21
4 4 .

2 2
A x x x

p
p
è ø

= - = -é ùê ú
 

The volume of the solid is, therefore,  

 () ( )
2

2

2

16
4 .

2 3

b

a

V A x dx x dx
p p

-

å õ
= = - =æ ö

ç ÷
ñ ñ  
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Example 13. (Circular cross sections with non-circular base) 

The base of a solid in the xy -plane is the region enclosed by

, 0, and 4y x y x= = =. Every cross section perpendicular to the x -axis is a 

semi -circle with its diameter across the base. Find the volume of the solid.  

Hint: Draw the base of the solid in the xy -plane. Note that t he area of 

cross section  (that is, semi -circle) is  () ( )
2

21

2 2 8 8

y
A x x x

p p
p
è øå õ å õ å õ

= = =é ùæ ö æ ö æ ö
ç ÷ ç ÷ ç ÷é ùê ú

  for 

each [ ]0,4 .xÍ
 
The volume is, therefore, ()

4

0

.
8

b

a

V A x dx xdx
p

p
å õ

= = =æ ö
ç ÷

ñ ñ  

6.2. The Shell method: 

In this method, we will study a different  method for finding the volume of 

a solid  of revolution. This method is called the shell method because it 

uses cylindrical shells as the representative elements (see figure below) . 

 

Let us first discuss the volume of a cylindrical shell. Consider a 

representative rectangle with w  as the width of the rectangle, h  as the 

height  (or length)  of the rectangle, and p  as the distance  between the 

axis of revolution and the center  of the rectangle. When this rectangle is  

revolved about its axis of revolution, it forms a cylindrical shell (or tube) 

of thickness  w . The radius of the larger  cylinder corresponds to the outer 

radius of the shell, and the radius of the smaller  cylinder corresponds to 

the inner radius of the shell.  To find the volume of this shell, consider 

these two cylinders. Because p  is the average radius  of the shell, we 

have the outer radius as ( )2p w+
 
and the inner radius as ( )2p w- . So, 

the volume of the shell is  

 

( )( )

( )( )( )

2 2

volume of shell volume of the cylinder volume of the hole

2
2 2

2 average radius height width .

w w
p h p h phwp p p

p

= -

å õ å õ
= + - - =æ ö æ ö
ç ÷ ç ÷

=
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Now, assume that  the plane region in the given figure  (a)  below is 

revolved about a line to form the solid  of revolution as shown in  figure 

(b) .  

(a)   (b)  

If we consider a horizontal rectangle  of width  yD  then, as the plane region 

in the xy -plane is revolved  about a line parallel to the x -axis, the 

rectangle generates a representative shell  whose  volume is  

 ()()2 .V p y h y ypD = Dè øê ú  

We can approximate the volume of the solid by n  such shells of thickness

iyD , height  ()ih y and average radius  ()ip y . Thus, the volume of the  solid 

is 

 ()()
1

2
n

i i i

i

V p y h y yp
=

º Dè øê úä . 

So, the exact volume of the solid  with horizontal axis as its axis of 

revolution  is obtained by taking the limit as n­¤ in such a way that the 

width of each rectangle approaches zero. Thus, the formula for the 

volume of solid of revolution with horizontal axis as its axis of revolution  

is 

 ()() ()()
1

lim2 2

dn

i i i
n

i c

V p y h y y p y h y dyp p
­¤

=

= D =è øê úä ñ . 

Similarly, to find the volume of the solid by cylindrica l shell method with 

vertical axis as axis of revolution  (see figure below) ,  
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we take a vertical rectangle as the representative rectangle, and the 

formula for the volume of the solid of revolution is  

 ()()2

b

a

V p x h x dxp= ñ  

Value Addition: 

If we compare the disk method with shell method, note that for the disk 

method, the representative rectangle is always perpendicular to the axis 
of revolution. However, for the shell method, the representative rectangle 

is always parallel to the axis of revoluti on. (see figures below)  
 

 
 

 

6.2.1. Solved Examples: 

Example 14. (Using shell method to find the volume) 

Find the volume of the solid of revolution formed by revolving the region 

bounded by  

 3 and the axis, 0 1,y x x x x= - - ¢ ¢ 

about the y -axis.  

Solution: Because the axis of revolution is vertical, we use a vertical 

representative  rectangle, as shown in the figure below.  
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The width xD  indicates that x  is the variable of  integration. The distance 

from the center of the rectangle to the axis of revolution is

() , 0 1,p x x x= ¢ ¢
 
and the height of the rectangle is  () 3h x x x= - . Applying 

the shell method, we get the  vo lume of the solid of revolution as 

 ()() ( )
1

3

0

4
2 2 .

15

b

a

V p x h x dx x x x dx
p

p p= = - =ñ ñ  

Example 15. (Using shell method to find the volume: a better 

option) 

Find the volume of the solid of revolution formed by revolving the region 

bounded by  the graph of  
2yx e-=  and the y -axis ( 0 1y¢ ¢) about the x -

axis.  

Solution: Because the axis of revolution is horizontal, we use a horizontal 

representative  rectangle, as shown in the figure below.  

 

Note that t he width yD indicates that y is the variable of  integration. The 

distance from the center of the rectangle to the axis of revolution is

() , 0 1,p y y y= ¢ ¢
 
and the height of the rectangle is  ()

2yh y e-= . The volume 

of the solid  by shell method  is, therefore  

 ()()
2 2

1
1

0
0

1
2 2 1 .

d

y y

c

V p y h y dy ye dy e
e

p p p p- - å õè ø= = =- = -æ öê ú ç ÷
ñ ñ  
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Example 16. (Shell method is better than washer method) 

Find the volume of the solid formed by revolving the region bounded by 

the graphs of 2 1y x= +, 0y= , 0x=  and 1x=  about the y -axis.  

Solution: In Example 8, we used washer method to find the required  

volume. However, it is more convenient to use shell method as  it involves 

only one integral. See figure below.  

 

Here, the volume is  

 ()() ( )
1

2

0

3
2 2 1 .

2

b

a

V p x h x dx x x dx
p

p p= = + =ñ ñ  

Example 17. (Disk method is better than shell method) 

Suppose a pontoon is designed by rotating the graph of  

 
2

1 , 4 4
16

x
y x= - - ¢ ¢ 

about the x -axis, where x  and y  are measured in feet. Find the volume 

of the pontoon.  

Solution: The solid and two methods are indicated in the following 

figures.  

 

By disk method, the volume  is 
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24 42 2 4
3

4 4

64
1 1 13.4 .

16 8 256 15

x x x
V dx dx ft

p
p p
- -

å õ å õ
= - = - + = ºæ ö æ ö

ç ÷ ç ÷
ñ ñ  

The shell method will give the same  volume but the integral becomes  

complicated. Use the figure to try shell method of finding the volume of 

the pontoon.  

Example 18. (Shell method is necessary) 

Find the volume of the solid formed by revolving the region bounded by 

the graphs of  

 3 1, 1, 1y x x y x= + + = = 

about the line 2x= .  

Solution: The plane region and the axis o f revolution is shown in the 

figure below.  

 

Using the vertical representative rectangle  parallel to the axis of 

revolution, the shell method gives the volume of the solid as  

 

()() ( )( )

( )

1

3

0

1

4 3 2

0

2 2 2 1 1

29
2 2 2 .

15

b

a

V p x h x dx x x x dx

x x x x dx

p p

p
p

= = - + + -

= - + - + =

ñ ñ

ñ

 

Value Addition: 

Note that the washer method is difficult to apply here as solving the 

equation 3 1y x x= + + for x  in terms of y  is not easy.  
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7. Arc Length of Parametric Curves: 

The graph of a function ()y f x=  defined over an interval [ ],a b  is a plane 

curve.  Our  first objective is to define what we mean by the length  (also 

called the arc  length ) of  a plane curve. We know that  if ( )1 1,x y  and ( )2 2,x y  

are the end points of  the straight line segment,  the length  of the line 

segment  is given by the d istance formula  

 ( ) ( )
2 2

2 1 2 1d x x y y= - + - . 

A sufficient  condit ion for the graph of a function  f  to have a finite arc 

length  between  ()( ),a f a  and ()( ),b f b
 
is that f¡ be continuous on  [ ],a b . 

Such a function is continuously  differentiable  on  [ ],a b , and its graph on 

the interval [ ],a b
 
is called a smooth  curve. To define the arc length  of a 

curve, we start by breaking the curve into small segments.  Then we 

approximate the curve segments by line segments and add the lengths of 

the line  segments to obtain a sum, which is approximately equal to the 

length of the curve. As the numbe r of seg ments increase , note that such 

a sum become s a  better approximation to the length of the curve.  

 

By taking the limit of this sum as the length of each line segment 

approaches zero, we obtain a unique finite number which is defined as  the 

arc length L  of the plane curve.  This idea is implemented below to derive 

the formula for finding the arc length of a plane curve.  

 Consider a function ()y f x=
 

that is continuously differentiable on 

the interval  [ ],a b . We can approximate the graph of f  by  n  line segments 

whose endpoints are  determined by the points of the partition  

 0 1 2 1n na x x x x x b-= < < < < < = 

of the interval [ ],a b . Let 0 1, , , nP P P  be the points on the curve 

corresponding to  x - coordinates  0 1, , , na x x x b= =, respectively, and join 

these points with straight line segments. These line segments form a 

polygonal path that we can regard as an approximation to the curve 

()y f x=  (see figure below).  
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The length of the thk  line segment in the polygonal path is  

 ( ) ( ) ( ) ( ) ( )( )
22 2 2

1 ...(1)k k k k k kL x y x f x f x-= D + D = D + -  

If we now add the lengths of these line segments, we obtain the following 

approximation  to the length L  of the curve  

 ( ) ( ) ( )( )
22

1

1

n

k k k k

k

L L x f x f x-
=

º = D + -ä . 

Since f  is differentiable on each interval  [ ]1,k kx x- , 1,2, ,k n= , by the Mean 

Value Theorem, we get that there exists a point [ ]1* ,k k kx x x-Í  such that  

 ( ) ( ) ( )1 * 1,2,..., .k k k kf x f x f x x k n-
¡- = D " =  

Hence, we get  

( ) ( ) ( )( ) ( ) ( ) ( )
2 2 22 2

1

1 1 1

* 1 *
n n n

k k k k k k k k

k k k

L x f x f x x f x x f x x-

= = =

¡ ¡º D + - = D + D = + Dè ø è øê ú ê úä ä ä

. 

Thus, taking the limit as n increases such that  the widths of all the sub -

intervals approach zero , yields the following integral that defines the arc 

length L :  

 ( ) ()
2

2 2

1

lim 1 * 1 1 ...(2)

b bn

k k
n

k a a

dy
L f x x f x dx dx

dx­¤
=

è ø
¡ ¡= + D = + = +è ø è øê ú ê ú é ùê ú

ä ñ ñ  

Now, given a plane curve  C , there does not always exist  a function g  

defined on an interval [ ],a b  such that its graph is the  curve  C  because the 

graph of this function  g  has to pass the vertical line test . So, w e use  

another  representation of ,C called  parametric r epresentation of  C . A 

plane curve C  th at can be represented by  a pair  of equations  
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 () () [ ]and , ,x x t y y t t a b= = Í  

where  t  is the parameter, is called a plane  parametric curve . Thus, if C  

is a smooth parametric curve , any  point on the curve C  can be written as

( ),k kx y , where  

 () (), 1,2,...,k k k kx x t y y t k n= = " = . 

where both ()x t  and ()y t  are differentiable  functions  of the parameter t . 

From equation (1), therefore, we get  

 ( ) ( ) () ( )( ) () ( )( )
2 22 2

1 1k k k k k k kL x y x t x t y t y t- -= D + D = - + -  

which , on using the Mean Value Theorem , gives us that  

 ( ) ( )
2 2

1 1

* **
n n

k k k k

k k

L L x t y t t
= =

¡ ¡º = + Dè ø è øê ú ê úä ä  

for some points [ ]1*, ** ,k k k kt t t t-Í . Taking the limit, we obtain the arc length 

(assuming that no portion of the curve is traced twice as t  varies from a

to b ) of C  as 

 ( ) ( ) () ()
2 2

2 2 2 2

1

lim * ** .

b bn

k k k
n

k a a

dx dy
L x t y t t x t y t dt dt

dt dt­¤
=

è ø è ø
¡ ¡ ¡ ¡= + D = + = +è ø è ø è ø è øê ú ê ú ê ú ê úé ù é ùê ú ê ú

ä ñ ñ  

7.1. Solved Examples: 

Example 19. Find the length of the graph of 
3 1

6 2

x
y

x
= +  on the interval 

1
,2

2

è ø
é ùê ú

 as shown in the figure below.  
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Solution: Using 
2

2

2 2

3 1 1 1

6 2 2

dy x
x

dx x x

å õ
= - = -æ ö

ç ÷
 yields an arc length of  the curve 

as 

 

22 2

2

2

1/2

2 2

4 2

4 2

1/2 1/2

1 1
1 1

2

1 1 1 1 33
2 .

4 2 16

b

a

dy
L dx x dx

dx x

x dx x dx
x x

è øå õ å õ
= + = + -æ ö æ öé ù

ç ÷ ç ÷ê ú

å õ å õ
= + + = + =æ ö æ ö

ç ÷ ç ÷

ñ ñ

ñ ñ

 

Example 20. Find the length of the circle of radius r  defined 

parametrically by  

 cos , sin 0 2x r t y r t t p= = ¢ ¢. 

Solution: As t  varies from 0 to 2p, the circle is traversed only once. So, 

the length of the circle or the circumference of the circle is  

 
2 2b

a

dx dy
L dt

dt dt

è ø è ø
= +é ù é ùê ú ê ú
ñ . 

We have sin   and  cos
dx dy

r t r t
dt dt
=- =  so that 

2 2

2dx dy
r

dt dt

å õ å õ
+ =æ ö æ ö

ç ÷ ç ÷
 and hence  

length  

 []
2

2

0

0

2L rdt r t r

p
p
p= = =ñ . 

Example 21. Find the length of the asteroid  3 3cos , sin 0 2 .x t y t t p= = ¢ ¢ 

Solution: The curve is symmetric with respect to the coordinate axes, as 

shown in the figure below. Therefore, the length of the curve is four times 

the length of the c urve in the first quadrant . Note that as  t  varies from 0 

to 2p , we get the trace of the curve in first quadrant.  
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The length of the curve is, therefore,  

 
2 2 2

0

4 3cos sin 6.

b

a

dx dy
L dt t tdt

dt dt

p
è ø è ø

= + = =é ù é ùê ú ê ú
ñ ñ  

Example 22. (A practical  application)  Suppose that a n electric cable is 

hung between two towers that  are 200 feet apart and  the cable takes the 

shape of a catenary whose equation is  

 ( )150 150150 cosh 75
150

x xx
y e e-

å õ
= Ö = +æ ö

ç ÷
. 

Find the arc length of the cable between the two towers.  

Solution: The electric cable between two towers with a suitable 

coordinate system is shown in the figure below.  

 

Since ( )150 1501

2

x xy e e-¡= - , we have () ( )
2 75 751

2
2

x xy e e-¡= - +  so that  

 () ( ) ( )
2

2 75 75 75 751 1
1 2

4 2

x x x xy e e e e- -è ø
¡+ = + + = +é ùê ú

. 

Therefore, the length of the cable is  

 () ( ) ( )
100

2 150 150 2 3 2 3

100

1
1 150 215

2

b

x x

a

s y dy e e dx e e ft- -

-

¡= + = + = - ºñ ñ . 

8. Area of a Surface of Revolution: 

A surface of revolution is obtained by revolving  the graph of a continuous 

function about a line . For  example, if a line  of length L (see figure below)  

is revolved about a line, called axis of revolution, we get the frustum of a 

right circular cone. This is the representative element whose lateral 

surface area will be used to find the surface area of the solid of 

revolution.  
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Recall that t he lateral surface area of the frustum of this cone is  

 ( )1 2

1
2    where    is the average radius.

2
S rL r r rp= = +  

where  1r  
is the radius at the left end  of the line segment, and 2r is the 

radius at the right end of the line segment.  Suppose the graph of a 

function f  having a continuous derivative on the interval  [ ],a b
 
is revolved 

about the x -axis to form a surface of revolution  (see  figure below ) . 

 

Let 0 1 2 na x x x x b= < < < < = be a partition of [ ],a b . Then the line segment 

of length ( ) ( )
2 2

i i iL x yD = D + D generates a frustum of a cone. Let ir  be the 

average radius of this frustum. By the Intermediate Value Theorem, there 

exists a point, say [ ]1,i i id x x-Í  for each 1,2,...,i n= , such that ()i ir f d= . The 

lateral surface area iSD  of the frustum is  

 ()( ) ( ) ()
2

2 2
2 2 2 1 i

i i i i i i i i

i

y
S r L f d x y f d x

x
p p p

å õD
D = D = D + D = + Dæ ö

Dç ÷
. 

By the Mean Value Theorem, there exists a points [ ]1, , 1,2,..., ,i i ic x x i n-Í =  

such that  

 ()
() ( )1

1

i i i
i

i i i

f x f x y
f c

x x x

-

-

- D
¡ = =

- D
. 
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So,  () ()( )
2

2 1i i i iS f d f c xp ¡D = + D, and the total surface area can be 

approximated by  

 () ()
2

1

2 1
n

i i i

i

S f d f c xp
=

¡º + Dè øê úä . 

By taking the limit as n­¤ in such way that length of each sub - interval 

approaches to zero, we obtain the total surface ar ea of the surface of 

revolution  (figure (a) below) as 

 () () () ()
2 2

1

lim2 1 2 1 .

bn

i i i
n

i a

S f d f c x f x f x dxp p
­¤

=

¡ ¡= + D = +è ø è øê ú ê úä ñ  

Similarly, if the graph of f  is revolved about y -axis, the surface area of 

the surfa ce of revolution (figure (b) below) is 

 ()
2

2 1

b

a

S x f x dxp ¡= +è øê úñ . 

(a)            (b)  

We can generalize the  formula for surface area to cover horizontal or 

vertical axis  of revolution by suitably adjusting the value of r . 

8.1. Formula for the area of a surface of revolution: 

Let ()y f x=
 
have a continuous derivative on the interval  [ ],a b . The area 

of  the surface of revolution formed by revolving the graph of f about a 

horizontal  or vertical axis is  

 () () () ( )
2

2 1 2  is a function of 

b b

a a

S r x f x dx r x ds y xp p¡= + =è øê úñ ñ  
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where  ()r x
 

is the distance between the graph of f  and the axis of 

revolution, and ()
2

1ds f x dx¡= +è øê ú  is the elementary arc length. Similarly,  

if ()x g y=
 
on defined on the interval [ ],c d , then the surface area is  

() () () ( )
2

2 1 2  is a function of 

d d

c c

S r y g y dy r y ds x yp p¡= + =è øê úñ ñ  

where  ()r y
 

is the distance between the graph of g  and the axis of 

revolution, and ()
2

1ds g y dy¡= +è øê ú  is the elementary arc length.  

8.2. Solved Examples: 

Example 23. (Area of a surface of revolution about horizontal 

axis) 

Find the area of the surface formed by revolving the graph of  () 3f x x=
 
on 

the interval  [ ]0,1  about the x -axis.  

Solution: The graph of f  and its surface of revolution about x -axis is 

shown below.  

 

The distance between the x -axis and the graph of f  is () ()r x f x= , and  

because () 23f x x¡ = , the surface area is  

 () () ( ) ( )
1

22 3 2 3/2

0

2 1 2 1 3 10 1 .
27

b

a

S r x f x dx x x dx
p

p p¡= + = + = -è øê úñ ñ  

Example 24. (Area of a surface of revolution about vertical axis) 

Find the area of the surface formed by revolving the graph of  () 2f x x=
 
on 

the interval  0, 2è ø
ê ú

 about the y -axis.  
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Solution: The graph of f  and its surface of revolution about y -axis is 

shown above . Here, the distance between the graph of f  and the y -axis 

is ()r x x= . Since () 2f x x¡ = , the surface area of revolution is  

 () () ( )
2 2

2 2 2

0 0

2 13
2 1 2 1 2 8 1 4 .

8 3

b

a

S r x f x dx x x dx x x dx
p p

p p¡= + = + = + =è øê úñ ñ ñ  

Example 25. (Area of a surface of revolution about vertical axis) 

Find the area of the surface that is generated by revolving the portion of  

the curve  2y x=  between 1x=  and 2x=  about the y -axis.  

Hint: This is similar to the Example 24. We can u se y  as the variable 

integration. See  figure below . U se the equation x y= , 1 4y¢ ¢, with 

1

2

dx

dy y
=

 

and ()r y y=
 

to show that the surface area of revolution is 

( )3/2 3/217 5
6

S
p
= - . 
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Exercises 1: Find the volume of solid of revolution 

(1)  Find the volume of the solid generated when the region enclosed 

by y x= , 2y=  and 0x=  is revolved about the y -axis.  

(2)  Find the volume of the solid generated when the region under 

the curve 2y x=  over the interval [0, 2] is rotated about the line 

1y=-. 

(3)  Find the volume of the solid generated when the region enclosed 

by  1y x= +, 2y x=  and 0y=  is revolved  about the x -axis.  

(4)  Find the volume of the solid generated when the region enclosed 

between y x= , 1x= , 4x= , and the x -axis is revolved about 

the y -axis.  

(5)  Find the volume of the solid generated when the region  R  in the 

first quadrant enclosed between y x=  and 2y x=  is revolved 

about the y -axis.  

(6)  Use cylindrical shells to find the volume of the solid generated 

when the region R  under 2y x=  over the interval [0, 2] is 

revolved about the line 1y=-.  

Exercises 2: Find the Arc Length 

(1)  Find the arc length of the curve 3 2y x=  from  ( )1, 1 to ( )2,2 2 . 

(2)  Find the length of the curve 2 3y x=  from the origin to the point  

where the tangent makes an angle of 4p  with the x -axis.  

(3)  Find the arc length of the graph of ( )ln cosy x= , 0 4x p¢ ¢ . 

(4)  Find the arc length of the curve whose parametric equations 

 are  

(a)  
3 2

, (0 1)
3 2

t t
x y t= = ¢ ¢ 

(b)  ( ) ( )
2 3

1 , 1 (0 1)x t y t t= + = + ¢ ¢ 

(c)  cos , sin (0 2)t tx e t y e t t p= = ¢ ¢  

Exercises 3: Find the area of surface of revolution 

(1) A right circular cone is generated by revolving the region 

bounded by y hx r= , y h=  and 0x=  about the y -axis. Verify 

that the lateral surface area of the cone is  2 2S r r hp= + .  
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(2) Find the area of the zone of a sphere formed by revolving the 

graph of 29y x= - 0 2x¢ ¢ about the y -axis.  

(3) Consider the graph of ( )( )
2

1 12 4y x x= - . Find the area of the 

surface formed when the loop of this graph is revolved around 

the x -axis.  

(4) Find the area of the surface swept out by revolving the circle 

( )cos , 1 sin 0 2x t y t t p= = + ¢ ¢
 
about the x -axis . 

Summary: 

In this lesson, we have learnt the derivation of the following integration 

formulas and  discussed  some of their applications . 

(1)  Area of a plane region bounded below by the graph of ()y g x= , 

bounded above by the graph of ()y f x=  and on the sides by the 

two vertical lines x a=  and x b=  is given by the definite integral  

 () () .

b

a

f x g x dx-è øê úñ  

(2)  The volume of a solid of revolution of a plane region about axis of 

revolution as x -axis, by the Disk Method, is given by the definite 

integral  

 ()
2

b

a

R x dxp è øê úñ  

where  ()R x  is the height of the representative rectangle 

perpendicular to the axis of revolution and .a x b¢ ¢  

(3)  The volume of a solid of revolution of a plane region about the axis 

of revolution as x -axis, by the Washer Method, is given by the 

definite integral  

 () ()( )2 2

.

b

a

R x r x dxp -è ø è øê ú ê úñ  

where  ()R x  and ()r x  are the outer and inner radii of the washer, 

respectively, and a x b¢ ¢. 

(4)  The volume of a  solid,  by  Method of Slicing, is given by the definite 

integral  
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 () .

b

a

A x dxñ  

where the cross section of the solid has area ()A x , .a x b¢ ¢  

(5)  The volume of solid of revolution  with horizontal axis as its axis of 

revolution , by Shell Method,  is given by the definite integral  

 ()()2

d

c

p y h y dypñ . 

where  ()p y  is the average radius of the shell and ()h y  is the 

height of the shell.  

(6)  The arc length of a smooth parametric curve 

() (), , ,x x t y t a t b= = ¢ ¢ is given by the definite integral  

 
2 2

.

b

a

dx dy
dt

dt dt

è ø è ø
+é ù é ùê ú ê ú

ñ  

(7)  The area of the surface of revolution formed by revolving the 

graph of ()y f x=
 
about a horizontal or vertical axis is given by the 

definite integral  

 () ()
2

2 1 ,

b

a

r x f x dxp ¡+è øê úñ  

where  ()r x
 
is the distance between the graph of f  and the axis of 

revolution .  
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