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1. Learning outcomes: 

After studying this chapter you should be able to 

 Understand the eigen values and eigenvectors of a matrix. 

 find the characteristic equation of a matrix 

 understand Cayley-Hamilton theorem 

 define the algebraic multiplicity of an eigenvalue 

 understand the similarity of matrices 

 

2. Introduction:  

The eigenvalue and eigenvectors are of considerable theoretical interest 

and wide-ranging application throughout the pure and applied 

mathematics. Eigen value and eigenvectors are used to solve the systems 

of differential equations, continuous dynamical systems, calculating 

powers of matrices (in order to define the exponential matrix) and 

analyzing the population growth models. They provide critical information 

in engineering design and arise naturally in fields such as physics, 

chemistry, statistics, biology, sociology and. 

 

 

 

 



Eigen Values and Eigen Vectors 

Institute of Lifelong Learning, University of Delhi                                                 pg. 3 

 

3. Characteristic Equation: 

Let A be a square matrix of order n, such that  
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Then we can form a matrix AI,  where I is the unit matrix of order n 

and  is any scalar.  
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Then, the determinant of this matrix equated to zero, i.e.   
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is called the characteristic equation of the matrix A. On expanding the 

determinant, the characteristic equation can be written as a polynomial 

equation of degree n in  and is of the form    

 (-1)n


n + a1


n1 + a2


n2 + - - - + an  = 0  

where a1, a2, - - -, an are the constants.  

The roots of this equation are called the characteristic roots of the matrix 

A.  
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4. Eigen Values and Eigenvectors: 

We know that a linear transformation T: V  V can be expressed by a 

matrix representation as follows.  

 T(x) = A x                        (1) 

where A is a matrix  

In practice, we are more interested to find those vectors x which 

transforms into scalar multiples of themselves.  

Let x be such a vector which transform into  multiple of itself by the 

transformation T. Then  

 T(x) = x         (2) 

where  is a scalar.  

Then we have 

 Ax = x 

 (A  I) x = 0       (3) 

This can be represented by the nhomogeneous linear equations as 

follows 

 (a11   )x1 + a12x2 + - - - + a1n xn = 0  

 a21 x1 + (a22  ) x2 + - - - + a2n xn = 0          (4) 

 --------------------------------------------- 

 an1 x1 + an2 n2 + - - - + (ann  ) xn = 0 

We know that nhomogeneous equations in nvariables have a nontrivial 

solution if and only if the coefficient matrix is singular, i.e. if  

 |A  I| = 0               (5) 

We know that |A  I| = 0 is the characteristic equation of the matrix A, 

which has nroots known as the eigenvalues of A.  

Corresponding to each root or we can say to each eigen value of  matrix 

A, the homogeneous system (3) has a nonzero solution  
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which is called an eigenvector or latent vector.  

Thus the Eigenvalue and Eigenvector of a Matrix may be defined 

as follows: 

Let A be a square matrix of order n. Then the nontrivial solution vector x 

of the equation  

 Ax = x 

for any scalar . Then this solution vector x is called an eigenvector of 

matrix A corresponding to , which is called an eigenvalue of A. 

Value Addition: Note 

1. Consider an n x n non-zero matrix A. Then a nonzero vector x is  

        called an eigenvector of the matrix A if there exists a nontrivial  
        solution x of Ax = x  corresponding to . And the scalar  is called  

        an eigenvalue of matrix A.  
2. The eigenvector corresponding to an eigenvalue may not be 

 unique i.e. there may exists more than one eigenvectors 
 corresponding to an eigenvalue. 

3. Corresponding to a nonsingular n x n square matrix A there 

 exist eigenvalues. Which may be all real, some real and  some   

        complex or all complex. 

 

Example 1. Prove that 0 is a characteristic root of a matrix if and only if 

the matrix is singular. 

Solution: The characteristic root of a matrix A is given by |A - I| = 0. If 

 = 0, then it gives |A| = 0 

  A is singular. 

Again if matrix A is singular, then 

 |A - I| = 0 
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  |A| - |I| = 0 

  0 - .1 = 0 

   = 0. 

Example 2: The sum of the eigen value of a square matrix is equal to the 

sum of the elements of its principal diagonal. 

Solution: Let  
33xij

aA   be a square matrix of order 3. Characteristic 

equation of A is  

  |A - I | = 0 

  0

333231

232221

131211


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

aaa
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aaa

 

  -3 + 2 (a11 + a22 + a33) - … = 0 …(1) 

But by the definition of characteristic equation, we have 

 |A - I | = (-1)3 ( - 1) (  - 2) ( - 3) 

      = -3 + 2 (1 + 2 + 3) - … …(2) 

Comparing equations (1) and (2), we get 

 1 + 2 + 3 = a11 + a22 + a33. 

Thus, the sum of the eigen value of a square matrix is equal to the sum of 

the elements of its principal diagonal. 

5. CayleyHamilton Theorem: 

Theorem 1: Every square matrix satisfies its own characteristic equation.  

Proof: Let A = [aij]nn be a square matrix, then 
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Now 
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Therefore, the characteristic equation is  

 |A  I| = 0  

 a0
n + a1

n1 + a2A
n2 + --------- + anI = 0  --------- (1) 

We have to prove that the matrix A satisfies the equation (1), i.e. 

 a0A
n + a1

n1 + a2A
n2 + --------- + an = 0  --------- (2) 

Since, the elements of the matrix AI are of first degree in  and the 

elements of Adj (A  I) are at most of degree (n  1) in  because some 

terms may cancelled.  

Therefore, we can write  

 Adj (A  I) = B0
n1 + B1

n2 + --------- + Bn2 + Bn1 

where B0, B1, --------- Bn2 , Bn1 are matrices or order n  n.  

We know that  

  (A  I) Adj.(A  I) = |A  I| I 

 (A  I) (B0
n1 + B1

n2 + ------ + Bn-2 + Bn-2  )  

     = (a0
n1 + a1

n2 + ------ + an) I 

On equating the coefficients of like power of  on both sides, we get 

  B0 = a0 I 
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 AB0  B1 = a1 I  

 AB1  B2 = a2 I 

 ABn-1  = an I 

premultiplying above  relations by An, An1, An2, --- A, and I respectively 

and adding we get  

 0 = a0 A
n + a1A

n1 + ------ + an1 A + an 

 a0 A
n + a1A

n1 + ------- + an1 A + an = 0 

Thus, every square matrix satisfies its own characteristic equation. 

Value Addition: Inverse of a matrix can be found using 

CayleyHamilton Theorem. 

We know that every square matrix satisfies its characteristic equation, 

i.e.,  
 a0 A

n + a1A
n1 + - - - + an1 A + an I = 0    ------ (1) 

on multiplying by A1, we have  

 a0 A
n1 + a1A

n2 + - - - + an1I  + an A
1 = 0    ------ (2) 

 A1 = 
1

na
 [ a0 A

n1 + a1A
n2 + - - - + an1I ] 

Thus, CayleyHamilton theorem gives another method for  competing the 

inverse of a sequence matrix.   
If we again multiply equation (2) by A1, we have 

 a0 A
n2 + a1A

n3 + - - - + an2I  + an1 A
1 + an A2 = 0 

 A2 = 
1

na
 [ a0 A

n2 + a1A
n3 + - - - + an2 I + an1A

-1] 

Hence, by using CayleyHamilton theorem, we can also final A2 and 

hence we can find A3, A4, - - - etc. 

 

Theorem 2: The eigenvalues of a triangular matrix are the entries on  its 

main diagonal.  

Proof: For the sack of simplicity, we have considered a 3  3, upper 

triangular matrix A such that  
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Then,  
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The scalar  is an eigenvalue of A if and only if the equation (A  I)x = 0 

has a nontrivial solution that is if and only if the equation has a free 

variable. Because of zero entries in A  I. It is easy to see that (A  I)x 

= 0 has a free variable if and only if at least one of the entries on the 

diagonal of A  I is zero. This happens if and only if  equals of the 

entries a11, a22; a33 in A.  

Theorem 3: The eigenvalues of a unitary matrix are of unit modulus. 

Proof: Let A be a unitary matrix so that 

 A* A = I = AA*   …(1) 

If  is a characteristic root of the matrix A and x is its eigenvector, then 

we have 

 Ax = x    …(2) 

Taking transpose conjugate of (2), we have 

 (Ax)* = (x)* 

 x*A* =  x*   …(3)    [Since * =  ] 

On multiplying (2) and (3), we get 

      x* * *A Ax x x   

 x* (A*A)x =   (x*x) 

 x*x =   (x*x)    [using (1)] 

  1 x*x 0     …(4) 

Since x is a characteristic vector, x  0 
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Consequently, x*x  0 

Hence equation (4) gives 

 101    

 11
2

   

Hence the characteristic roots of a unitary matrix are of unit modulus. 

Value Addition: Unitary Matrix 

A matrix A is said to be unitary matrix if and only if A* A = I = AA* 

Where A* is the transpose of A and I is the identity matrix. 

 

Example 3. Show that for any square matrix A, A and A* have same set 

of eigen values. 

Solution:  Let A be a square matrix. Then the characteristic equation of A 

is 

 |A - I| = 0    …(1) 

Let A* be the transpose of A. 

Then the characteristic equation of A* will be 

 |A* - I| = 0   …(2) 

Since the interchange of rows and columns does not alter the value of the 

determinant we have. 

 |A* - I| = |A - I| 

 |A - I| = |A - I|* = |A* - I*| = |A* - I| as I* = I 

Hence the eigen values of matrix A and its transpose A* are same. 
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Example 4: Product of all eigen values of a square matrix A is equal to 

the determinant of matrix A. 

Solution: Let A = [aij]n x n be a given square matrix and 1, 2, 3 ……, n 

be its eigen values. If () be the characteristic polynomial then,  

 () = | A - I | 
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
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       = (-1)n {n + p1 
n-1 + p2 

n-2 + … + pn} 

       = (-1)n {( - 1) ( - 2) ( - 3) … ( - n)} 

Putting  = 0, we get 

 (0) = (-1)n (-1)n 123…n 

 |A| = 123…n 

Hence the product of all eigen values of A is equal to determinant (A). 

Theorem 4: The eigenvalues of a Hermitian matrix are all real. 

Proof: Let  be the eigenvalue of a Hermitian matrix A. Then there exists 

a non-zero eigenvector x such that  

 Ax = x   …(1) 

Pre-multiplying both sides of (1) by x*, we get 

 x*Ax = x*x   …(2) 

Transpose conjugate of (2) gives 

 (x*Ax)* = (x*x)* 
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 x*A*(x*) = x*(x*)* *   [By reversal law] 

 x*A*x = x*x     [  * ] 

But A is a Hermitian matrix therefore, A* = A 

Thus, we have 

 x*Ax =  x*x   …(3) 

From (2) and (3), we have 

   XXXX **    

  x*x 0      …(4) 

Since x is a non-zero eigenvector 

 x*x  0 

Hence from (4), we have  

   0  

which is possible only when  is real. 

Hence the eigenvalues of a Hermitian matrix are all real. 

Value Addition: Hermitian Matrix 

A Matrix A is said to be Hermitian matrix if and only if A* = A. 

 

Theorem 5: The eigenvalues of a skew-hermitian marix is either zero or 

purely an imaginary number. 

Proof: Since A is a skew-Hermitian matrix 

 iA is a Hermitian matrix. 



Eigen Values and Eigen Vectors 

Institute of Lifelong Learning, University of Delhi                                                 pg. 13 

 

Let  be a characteristic root of A. 

Then,  Ax = x  (iA)x = (i)x 

 i is a characteristic root of matrix iA. 

But i is a Hermitian matrix. 

Therefore i should be real. 

Hence  is either zero or purely imaginary. 

Value Addition: Skew-Hermitian Matrix 

A Matrix A is said to be Skew-Hermitian matrix if and only if A* = - A. 

 

Theorem6: The characteristic roots of an idempotent matrix are either 

zero or unity. 

Proof: Since A is an idempotent matrix. 

 A2 = A. 

Let x be a eigenvector of the matrix A corresponding to the eigenvalue  

so that 

 Ax = x   …(1) 

 (A - I)x = O such that x  0 

Pre-multiplying (1) by A 

 A(Ax) = A(x) = (Ax) 

 (AA)x = (x)   [by (1)] 

  A2x = 2x  Ax = 2x [Since A2 = A] 
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  x = 2x   [by (1)] 

 (2 - )x = O  
2 -  = 0  [Since x  0] 

  ( - 1) = 0 

  = 0, 1. 

Value Addition: Idempotent Matrix 

A Matrix A is said to be Idempotent matrix if and only if A2 = A. 

 

Theorem 7: The v1, v2, . . ., vn are eigenvectors that correspond to 

distinct eigenvalues  1, 2,. . ., n  of an n  n matrix A, then the set {v1, 

v2, . . ., vn} is linearly independent.  

Proof: Suppose {v1, v2, . . ., vn} is linearly dependent. Since v1 is 

nonzero, Let p be the least index such that vp+1 is a linear combination of 

the preceding (linearly independent) vectors. Then there exist scalars a1, 

a1, . . ., ap such that  

 a1v1 + a2v2 + . . . + ap vp = vp+1               ... (1) 

Multiplying both sides of (1) by A and using the fact that  Avk = kvk for 

each k, we obtain  

 a1Av1 + a2 Av2 + . . . + ap Avp = Avp+1 

 a1 v1 + a2 v2 + . . . + cppvp = p+1 vp+1             ... (2) 

Multiplying both sides of (1) by p+1 and subtracting the result from (2), 

we have  

 a1 (1  p+1)v1 + a2 (2  p+1)v2 + . . .+cp(p  p+1)vp = 0     ... (3) 

Since {v1, v2, . . ., vp} is linearly independent, the weights  in (3) are all 

zero. But none of the factors (1  p+1) are zero, because the eigenvalues 

are distinct. hence ai = 0 for i = 1, ......, p. But then (1) says that vp+1 = 

0, which is impossible. Hence {v1, v2, . . ., vn} cannot be linearly 

dependent and therefore must be linearly independent.  
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Value Addition: Note 

A set of vectors {v1, v2, . . ., vp} is called linearly dependent if any one of 
them can be written as a linear combination of other vectors. 

 

Example 5: Find the eigen values and eigen vector of the matrix  

A = 












45

21
. 

Solution: The characteristic equation of the given matrix is  

 |A -  I| = 0 

or 








45

2I
 = 0 

 
2 - 5 - 6 = 0 

  = 6, - 1. 

Thus, the eigen values of A are 6, - 1. 

Corresponding to  = 6, the eigen vectors are given by 

 (A – 6I)X1 = 0 

or 




















2

1

645

261

x

x

 
= 0 

or 




















2

1

25

25

x

x
 = 0 

We get only one independent equation – 5x1 – 2x2 = 0 

 
1

21

52
k

xx



  (say) 

 x1 = 2k1,  x2 = 5k1 
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 eigen vectors are 











5

2
11

kX  

Corresponding to  = -1, the eigenvectors are given by 

 (A + I) X2 = O 

 





























0

0

55

22

2

1

x

x
 

 x1 – x2 = 0 

 
2

21

11
k

xx
  (say) 

 The eigen vectors are X2 = k2 








1

1
. 

Example 6. Find the eigen values and the corresponding eigen vectors of 

the matrix 
























021

612

322

A . 

Solution: The characteristic equation of the given matrix is |A - I| = 0 

or 0

21

612

322















 

or (-2 -) [-(1 - ) – 12] – 2 [-2 -6] – 3 [-4 + 1(1-)] = 0 

or 
3 + 2 - 21 - 45 = 0 

     ( + 3)(2 - 2 - 15) = 0  

 ( + 3)( + 3)( - 5) = 0   = -3, -3, 5 

Thus, the eigen values of A are -3, -3, 5. 

Corresponding to  = -3, the eigen vectors are given by 
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 (A + 3I) X1 = O 

or 

1

2

3

1 2 3

2 4 6

1 2 3

x

x O

x

    
   

 
   
       

 

We get only one independent equation x1 + 2x2 – 3x3 = 0 

Let x3 = k1 and x2 = k2 then x1 = 3k1 – 2k2 

 The eigen vectors are given by 

 


















































 



0

1

2

1

0

323

21

1

2

21

1
kk

k

k

kk

X  

Corresponding to  = 5, the eigen vectors are given by (A – 5I) X2 = O 

 

1

2

3

7 2 3 0

2 4 6 0

1 2 5 0

x

x

x

      
     

  
     
              

 

1 3

1 1

7 2 3 0 1 2 5 0

2 4 6 0 2 4 6 0

1 2 5 0 7 2 3 0

1 2 5 0

2 4 6 0 ( 1)

7 2 3 0

R R

R R

       
   

    
   
          

 
 

   
 
   

 

 

2 2 1

3 3 1

3 3 2

2 2

1 2 5 0
2

0 8 16 0
7

0 16 32 0

1 2 5 0

0 8 16 0 8

0 0 0 0

1 2 5 0
1

0 1 2 0
8

0 0 0 0

R R R

R R R

R R R

R R

 
  

       

 
 

   
 
  

 
 


 
  
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 x1 + 2x2 + 5x3 = 0 

          x2 +2x3 = 0 

 x3 = -k, x2 = 2k, x1 = k3,  

Hence the eigen vectors are given by 

 2

1

2

1

X k

 
 


 
  

. 

Example 7: Find the characteristic equation of the matrix 

,

221

121

112























A  and hence find its inverse A-1 using Cayley-Hamilton 

theorem. 

Solution: The characteristic equation of the given matrix A is  

 |A - I| = 0 

 0

221

121

112















 

 
  0

21

21

21

11

22

12
2 





















  

        01222
2

  . 

thus the required characteristic equation is 3 - 62 + 8 - 3 = 0 

Using Cayley Hamilton Theorem, we have 

 
 IAAA 86

3

1 21   
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

















































































100

010

001

8

221

121

112

6

796

575

566

3

11A  

 


















































































800

080

008

12126

6126

6612

796

575

566

3

11A  

Therefore inverse of matrix A is 














 



330

131

102

3

11A . 

Example 8. Find the characteristic equation of the matrix 


















211

010

112

A  and 

hence, compute A-1. Also find the matrix represented by 

A8 – 5A7 + 7A6 – 3A5 + A4 – 5A3 + 8A2 – 2A + I. 

Solution: The characteristic equation of A is  

 0

211

010

112

































IA  

or 
3 - 52 + 7 - 3 = 0   

By Cayley-Hamilton theorem, A3 – 5A2 + 7A – 3I = O …(1) 

Pre-multiplying (1) by A-1, we get 

 A-1 A3 – 5A-1A2 + 7A-1 A – 3A-1I = A-1O 

 A2 – 5A + 7I – 3A-1 = O 

 3A-1 = A2 – 5A + 7I 

 A-1 = 
3

1
(A2 – 5A + 7I)     …(2) 
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Now, 




















































544

010

445

211

010

112

211

010

112

.2 AAA  

From (2), 












































































211

030

112

700

070

007

1055

050

5510

544

010

445

3 1A  

 






















211

030

112

3

11A  

Now, IAAAAAAAA  285375 2345678  

       IAAIAAAAIAAAA  223235 375375  

  = A2 + A + I    [Using (1)] 

  






































































100

010

001

211

010

112

211

010

112

211

010

112

 

  








































































855

030

558

100

010

001

211

010

112

544

010

445

 

Example 9. Given 
























113

110

121

A  find Adj. A by using Cayley-Hamilton 

theorem.  

Solution: The characteristic equation of the given matrix A is  

 | A - I | =  0  

 













113

110

121

 

= 0 

 (1 - ) [(1 - )2 – 1] – 2 [3] – 1 [-3(1 - )] = 0 
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 (1 - ) (1 + 2 - 2 - 1) – 6 + 3 - 3 = 0 

 
2 - 3 – 2  + 22 – 3 - 3 = 0 

 - 3 + 32 - 5 - 3 = 0 

 
3 - 32 + 5 + 3 = 0 

By Cayley-Hamilton theorem, matrix A should satisfy the equation 

 A3 – 3A2 + 5A + 3I = O 

Pre-multiplying by A-1, we get 

 A2 – 3A + 5I + 3A-1 = O 

  IAAA 53
3

1 21       …(1) 

Now, 






































































146

223

452

113

110

121

113

110

121

.2 AAA  

 
























339

330

363

3A  

 From (1), 


















































































500

050

005

339

330

363

146

223

452

3

11A

























173

143

110

3

1
 

We know that, 
A

AAdj
A

.1   

 Adj. A = A-1 | A | 

Now, 3

113

110

121









A  
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 Adj. A = (-3) 
























































173

143

110

173

143

110

3

1
 

Example 10: Let 

3 7 9 4 1

4 5 1 , 3 2

2 4 4 1 1

A u and v

     
     

      
     
          

. Are u and v 

eigenvectors of A.  

Solution : Given 

3 7 9

4 5 1

2 4 4

A

 
 

  
 
  

 

 

3 7 9 4 12 21 9 0

4 5 1 3 16 15 1 0

2 4 4 1 8 12 4 0

Au

        
       

        
       
               

4

0 3

1

 
 

 
 
  

 

Thus, 

4

3

1

u

 
 

 
 
  

 is an eigenvector of matrix A correspondence to an 

eigenvalue (0).  

Now, 

 

3 7 9 1 3 14 9 2 1

4 5 1 2 4 10 1 7 2

2 4 4 1 2 8 4 2 1

Av 

           
         

          
         
                    

 

Thus, 

1

2

1

v

 
 

 
 
  

 is not an eigenvector of Matrix A.  

Example 11: Show that  = 4, is an eigenvalue of the matrix find the 

corresponding eigenvectors.  

     

3 0 1

2 3 1

3 4 5

A

 
 


 
  

   

Solution : We know that, scalar 4 is an eigenvalue of A if the equation  

 Ax = 4x 
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has a nontrivial solution, Thus 

 (A  4I) x  =  0 

Now we have, 

  

1 0 1

4 2 1 1

3 4 1

A I

  
 

  
 
  

 

Now   

 

1 0 1 1 0 1

2 1 1 2 1 1

3 4 1 3 4 1

    
   

 
   
       

   1 1( 1)RR    

    

1 0 1

0 1 1

0 4 4

 
 

 
 
  

   
1 2 1

3 3 1

R 2R

R 3R

R

R

 

 
 

    

1 0 1

0 1 1

0 0 0

 
 

 
 
  

   3 3 2R 4RR    

since the rank (A  I) = 2< No. of variable, therefore the equation Ax = 

4x has a nontrivial solution. 

Hence, 4 is an eigenvalue of A.  

To find the corresponding eigenvector, we have 

 

1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0

   
   

 
   
      

 

Thus, we have 

 x1 + x3 = 0 

 x2 + x3 = 0 

Let x3 = k  x2 = k  and x1 = k 
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Thus general solution has the form 

k

k

k

 
 
 
  

.  

Thus, Each vector of the form 

1

1 , 0

1

k k

 
 


 
  

, is an eigenvector 

corresponding to the eigenvalue 4. 

or in particular 

1

1

1

 
 
 
  

, is an eigenvector corresponding to the eigenvalue 4. 

Value Addition: Cautions 

1. We have used the row reduction method in this example to find the   
    eigenvector, but this method cannot be used to find the eigenvalues.  

2. To find the eigenvector corresponding to the eigenvalue , we find a  

    nonzero solution of the equation (A  I)x = 0. 

3. The set of all solutions of the equation (A  I)x = 0 is called the  

    eigenspace of matrix A corresponding to the eigenvalue  and this  set 

 of solutions is just the null space of the matrix (A  I), therefore it  

    is also a subspace of Rn. 
4. The eigenspace of matrix A consists of the zero vector and all the  

    eigenvectors corresponding to any eigenvalue .  

 

Example 12: Find a basis for the matrix  
10 9

4 2
A

 
  

 
 for the eigenspace 

corresponding to the eigenvalue 4  . 

Solution: We have 

 
10 9 1 0

4 4
4 2 0 1

A I
   

     
   

 

          
6 9

4 6

 
  

 
 

Now to find the solution of the equation  

 (A  4I)x = 0. 

We have 
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6 9 0 6 9 0

4 6 0 4 6 0

    
   

    
     

1 1

1

3
R R  

        
2 3 0

0 0 0

 
 
 

     2 2 12R R R   

Thus, we have 2x1  3x2 = 0 

Let x2 = k  

  x1 = 
3

2
k  

Thus the general solution is  

 
1

2

3
2

x k
x

x k

  
    

    

 
3

2

1
k
 

  
  

 

Thus, the required basis is 
3

2

1

   
  
    

. 

Example 13: Let  

4 0 1

2 1 0

2 0 1

A

 
 

 
 
  

. An eigenvalue of A is 2. Find a basis for 

the corresponding eigenspace.  

Solution: We have 

 

4 0 1 1 0 0 2 0 1

2 2 1 0 2 0 1 0 2 1 0

2 0 1 0 0 1 2 0 1

A I

     
     

      
     
            

 

To find the solution of the equation (A - 2I) x = 0, we have  

  

2 0 1 0 2 0 1 0

2 1 0 0 0 1 1 0

2 0 1 0 0 0 0 0

   
   
  
   
       

  
2 2 1

3 3 1

R R R

R R R

 

 
 

Thus, we have 

 2x1 + x3 = 0 

 x2 + x3 = 0 
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Hence, x3 is a tree variable here, let x3 = k 

 x2 = k  and   x1 = 
1

2
k  

Thus, the general solution is  

 

1

2 2

3 3

1
2 2

1

1

k

x

x x x k

x x

 
                       

 

 

Thus, the required basis is 

1
2

1

1

 
 
 
 
  

. 

Value Addition: Basis for the Eigenspace 

The basis for the eigenspace is set of linearly independent vectors which 
spans the eigenspace. 

  

Example 14: If  be an eigen value of a non-singular matrix A, show that 

 (i) -1 is an eigen value of A-1. (ii) 


A
 is an eigen value of adj. A. 

Solution: (i)  is an eigen value of A. 

  There exists a non-zero vector x such that Ax = x 

  x = A-1(x) 

  x = (A-1x) 

  -11
x=A x

λ
 

  A-1x = -1x 

  
-1 is an eigen value of A-1. 
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(ii)  is an eigen value of A. 

  There exists a non-zero vector x such that Ax = x 

  (adj. A)(Ax) = (adj. A)(x) 

  ((adj. A)A) x =  (adj. A) x  

  | A | Ix =  (adj. A) x  [ (adj. A) A = |A| I] 

  | A | x =  (adj. A) x 

  


A
 x = (adj. A) x 

  (adj. A) x = 


A
x 

  


A
 is an eigen value of adj. A. 

Example 15: Show that if 1, 2, ……, n are the characteristic roots of 

the matrix A, then A3 has the characteristic roots 33

2

3

1
,.....,,

n
 . 

Solution: Let  be a characteristic root of the matrix A. Then there exists 

a non-zero vector x such that  

 Ax = x   …(1) 

 A2(Ax) = A2(x)   

 A3x = (A2x) 

But A2x = A(Ax) = A(x)   [using (1)] 

       = (Ax) = (x) = 2x 

 A3x = (2x) = 3X 

 
3 is a characteristic root of A3. 
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Hence, if 1, 2, ……, n are the characteristic roots of A, then 33

2

3

1
,......,,

n
  

are the characteristic roots of A3. 

6. Algebraic Multiplicity of an Eigengalue: 

The algebraic multiplicity of an eigenvalue  is its multiplicity as a root of 

the characteristic equation.  

Example 16: Find the characteristic equation of the matrix 

   

5 2 6 1

0 3 8 0

0 0 5 4

0 0 0 1

A

  
 


 
 
 
 

 

Thus, find the eigenvalues of A and their multiplicities. 

Solution: We have 

 

5 2 6 1

0 3 8 0

0 0 5 4

0 0 0 1

A I










   
 

 
  
 
 

 

 

Thus, characteristic equation is given by 

 | |  = 0A I  

 

5 2 6 1

0 3 8 0
0

0 0 5 4

0 0 0 1









   
 

 
  
 
 

 

 

       5  3 5  1 0          

     
2

5  3 1 0        

Thus 5, 3 and 1 are the eigenvalues of A. The eigenvalue 5 have 

multiplicity of order 2 because (5  ) occurs two times as a factor of the 

characteristic polynomial. And the multiplicity of eigenvalues 3 and 1 is 

one.   
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7. Similarity of Matrices: 

If A and B are two n  n matrix. Then A is similar to B if there is an 

invertible matrix P such that P1AP = B or Equivalently  

 A = PBP1 

Changing A into P1AP is called similarity transformation. 

Theorem 8: If n  n matrices A and B are similar, then they have the 

same characteristic polynomial and hence the same eigenvalues (with the 

same multiplicities). 

Proof: If -1B = P AP , then 

    -1 -1 -1 -1B -λI = P AP - λP P = P AP - λP = P A - λI P  

 |B - I| = |P-1(A - I)P| = |P-1|.|A - I|.|P| 

     =|A - I|.|P-1|.|P| = |A - I|.|P-1 P| 

     =|A - I|.|I| = |A - I| [Since |I| = 1] 

Hence matrices A and P-1AP have the same characteristic roots. 

Value Addition: Cautions 

1. Similarity is not the same as row equivalence. (If A is row equivalent to 
B, then B = EA for some invertible matrix E.)  

2. Row operation on a matrix usually change its eigenvalues. 

 

Exercises: 

1. Is  = 2 an eigenvalue of 
7 3

3 1

 
 

 
? Why or why not ? 

2. Is 
1

4

 
 
 

 an eigenvector of  
3 1

3 8

 
 
 

 ? If so, find the corresponding 

 eigenvalue.  

3. Is 

4

3

1

 
 

 
  

 an eigenvector of 

3 7 9

4 5 1

2 4 4

 
 
 
 
  

? If so, find the corresponding 

 eigenvalue. 
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4. Is  = 4  an eigenvalue of 

3 0 1

2 3 1

3 4 5

 
 
 
  

? If so, find the  

 corresponding eigenvector.  

5. Is  = 3  an eigenvalue of 

1 2 2

3 2 1

0 1 1

 
 


 
  

? If so, find the  corresponding 

 eigenvector. 

6. Find the eigen values and eigen vectors of the matrix 

 
























021

612

322

A . 

7. Find all the eigenvalues and corresponding eigenvectors of the 

 matrix 




















021

184

122

A . 

8. Find the eigen values and eigen vectors of the following matrix 

 (i) 
























342

476

268

A    (ii) 
























312

132

226

A   (iii) 


















500

620

413

A  

For the following questions find  a basis for the eigenspace corresponding 

to each listed eigenvalue.  

9.  
10 9

, 4
4 2

A 
 

  
 

 

10. 
7 4

, 1,5
3 1

A 
 

  
  

 

11. 

4 0 1

2 1 0 , 1,2,3

2 0 1

A 

 
 

  
 
  
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12. 

4 2 3

1 1 3 , 3

2 4 9

A 

 
 

   
 
  

 

13. Verify the  CayleyHamilton theorem for the following theorems  

 and also find the inverse of using Cayley-Hamilton theorem 

 (i) 
2 3

3 5

 
 
 

  (ii) 

7 1 3

6 1 4

2 4 8

 
 
 
  

  (iii) 

4 3 1

2 1 2

1 2 1

 
 


 
  

 

14. Find the inverse of the matrix A using Cayley-Hamilton theorem, 

 given the matrix 
























211

121

112

A . 

15. Show that the matrix, 

1 2 0

2 1 0

0 0 1

A

 
 

 
 
  

 satisfies its own characteristic 

 equation and hence obtain A2. 

16. If 1, 2, …, n are the eigen values of A, then find the eigen values 

 of the matrix (A - I)2. 

17. Show that for a square matrix, there are infinitely many eigen 

 vectors corresponding to a single eigen value. 

Summary: 

In this lesson, we have emphasized on the following  

 eigen values and eigenvectors of a matrix. 

 characteristic equation of a matrix 

 Cayley-Hamilton theorem 

 algebraic multiplicity of an eigenvalue 

 similarity of matrices 
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