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1. Learning Outcomes: 

After studying this unit, you will be able to 

 understand the concept of cluster point of a set  

 define the limit of a function at a cluster point of its domain 

 explain the difference between limit of a function at a point and the 

value of the function at that point 

 relate the limit of a function at a point to the limit of a sequence at 

that point 

 tell when a function will fail to have a limit at a point     

2. Introduction: 

This unit is about the concept of “limits of functions”. So far, we have 

learnt the idea of limits of sequences. We know exactly when a sequence is 

said to be convergent. Let us recall once again. 

 

2.1 Definition of a Convergent Sequence: A sequence (𝑥𝑛)𝑛𝜀ℕ is said to 

converge to a real number 𝑥 if for every 𝜖 >   0 there exists a natural number 

𝐾(𝜖) such that for all 𝑛 ≥  𝐾(𝜖), the terms 𝑥𝑛  satisfy: |𝑥𝑛 − 𝑥| < 𝜖. 

I.Q.1 

Example 1: Show that lim𝑛⟶∞
2𝑛

𝑛!
= 0. 
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Solution: We see that 

 2.2.2.2 … . .2 ≤ 2.3.4.5 … . . (𝑛 − 1) 

and therefore, 

 2𝑛−2 ≤  𝑛 − 1 ! ∀ 𝑛 ≥ 2 

Hence, we have 

 0 ≤
2𝑛

𝑛!
= 4.

2𝑛−2

𝑛!
≤ 4.

 𝑛−1 !

𝑛!
=

4

𝑛
⟶ 0 as 𝑛 ⟶ ∞; 

and therefore,  

 lim𝑛⟶∞
2𝑛

𝑛!
= 0. 

 

Example 2: Prove that lim𝑛⟶∞  𝑛!
𝑛

= ∞. 

Solution: We have, if 𝑛 is even, then, 

 𝑛! = 1.2.3.4 … . .
𝑛

2
.  

𝑛

2
+ 1 … . 𝑛 ≥

𝑛

2
.
𝑛

2
.
𝑛

2
… .

𝑛

2
= (

𝑛

2
)

𝑛

2 

and if if 𝑛 is odd, then, 

 𝑛! = 1.2.3.4 … . . (
𝑛+1

2
).  

𝑛+3

2
 … . 𝑛 ≥

(𝑛+1)

2
.

(𝑛+1)

2
.

(𝑛+1)

2
… .

(𝑛+1)

2
= (

𝑛+1

2
)

(𝑛+1)

2  

so that ∀ 𝑛 𝜀 ℕ, 

 𝑛! ≥ (
𝑛

2
)

𝑛

2 

and taking the 𝑛th-root yields ∀ 𝑛 𝜀 ℕ 

  𝑛!
𝑛

≥ (
𝑛

2
)

1

2 ⟶ ∞ as 𝑛 ⟶ ∞. 

Therefore, we have  

 lim𝑛⟶∞  𝑛!
𝑛

= ∞. 

 

In this unit, we shall extend the idea of convergence of a sequence to the 

limit of a function. The concept of limits is the very basic of all of calculus 

and analysis. It took long time for mathematicians to understand and be 

able to define the concept of limit at the very first place. Finally, the great 

German mathematician Karl Weierstrass, inspired by Augustin Louis Cauchy, 

So, let us begin with the concept of cluster point of a set. 
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3. Cluster Point of a Set: 

3.1 Definition of a Cluster Point of a Set: Let 𝐴 ⊆ ℝ. A point 𝑐 є 𝑅 is said 

to be a cluster point of the set 𝐴 if for every 𝜖 >   0,  there exists at least one 

point 𝑥 є 𝐴, 𝑥 ≠ 𝑐 such that |𝑥 − 𝑐| < 𝜖. Thus, a real number 𝑐 is a cluster point 

of a set 𝐴 if every 𝛿-neighbourhood (𝑐 −  𝛿, 𝑐 +  𝛿) of 𝑐 contains a point of the 

set 𝐴 different from 𝑐. 

Let us look at some examples. 

Example 3: Find the cluster points of the set 𝐴1 = [1,2].  

Solution: Then, the end-point 1 is a cluster point of 𝐴1 because for any 

𝛿 >  0, the 𝛿 –nbd (1 −  𝛿, 1 +  𝛿) contains infinitely many points of 𝐴1 and 

therefore, points of 𝐴1 distinct from 1. Similarly, the end-point 2 is a cluster 

point of 𝐴1. Further, every interior point of 𝐴1is a cluster point of 𝐴1. Hence, 

all the points of the set 𝐴1are its cluster points. 

Example 4: Find the cluster points of the set 𝐴2 = (0,1). 

Solution: Then, the end-point 1 is a cluster point of 𝐴2. This is because, for 

any 𝛿 >  0, the 𝛿–nbd (1 −  𝛿, 1 +  𝛿) contains infinitely many points of 𝐴2 and 

therefore, points of 𝐴2 distinct from 1. Similarly, the end-point 0 is a cluster 

point of 𝐴2. Further, every interior point of 𝐴2 is a cluster point of 𝐴2. Hence, 

all the points of the set 𝐴2are its cluster points. 

Example 5: Find the cluster points of the set 𝐴3 = {3,4}. 

Solution: Here, 3 is not a cluster point of 𝐴3. To see this, consider the 𝛿-nbd 

of 3 for 𝛿 = 1/2 given by the interval 𝑉 = (3 −  𝛿 , 3 +  𝛿 )  =  (2.5,3.5). Then, this 

neighbourhood contains only one point of 𝐴3, namely 3. That is, there exists 

a neighbourhood of 3 containing no point of 𝐴3 distinct from 3. Hence, 3 is 

not a cluster point of 𝐴3. Similarly, 4 is not a cluster point of𝐴3. Hence, there 

are no cluster points of 𝐴3. 
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Value Addition: Remarks 

 A finite set has no cluster point. 

 A cluster point of a set need not belong to that set. 

 

Let us now study the characterization of cluster points as limits of 

sequences. 

 

Theorem 1: A number 𝑐 𝜀 𝑅 is a cluster point of a set 𝐴 ⊆ ℝ if and only if 

there exists a sequence (𝑎𝑛)𝑛𝜀𝑁  in 𝐴 such that lim 𝑎𝑛 = 𝑐 and 𝑎𝑛  ≠  𝑐 for all 

𝑛 є 𝑁. 

Proof: Firstly, let us assume 𝑐 to be a cluster point of 𝐴.  

Therefore, for every 𝛿 >  0, the 𝛿-nbd (𝑐 −  𝛿, 𝑐 +  𝛿) contains a point of 𝐴 

distinct from 𝑐. In particular, for every 𝑛 𝜀 𝑁, taking 𝛿 = 1/𝑛, we may see that 

the 𝛿 −nbd (𝑐 − 1/𝑛, 𝑐 + 1/𝑛) contains at least one point 𝑎𝑛 of 𝐴 such that 

𝑎𝑛  ≠  𝑐. Thus, there exists some 𝑎𝑛 𝜀 𝐴 such that 

 𝑎𝑛  ≠  𝑐 and 𝑎𝑛  𝜀 (𝑐 − 1/𝑛, 𝑐 + 1/𝑛).  

That is, there exists some 𝑎𝑛 𝜀 𝐴 such that 

 𝑎𝑛  ≠  𝑐 and |𝑎𝑛 − 𝑐| <  1/𝑛 𝑉 𝑛 є 𝑁. 

Hence, there exists a sequence 𝑎𝑛 𝜀 𝐴 such that 𝑎𝑛  ≠  𝑐 and lim 𝑎𝑛 = 𝑐. 

Conversely, let there be a sequence 𝑎𝑛 𝜀 𝐴 such that 𝑎𝑛  ≠  𝑐 and lim 𝑎𝑛 = 𝑐. 

Clearly, then 

 𝑎𝑛  𝜀 𝐴\{𝑐} 𝑉 𝑛 є 𝑁. 

Since, lim 𝑎𝑛 = 𝑐, we have for every 𝛿 >  0, a natural number 𝐾(𝛿) = 𝐾 such 

that  

 |𝑎𝑛 − 𝑐| <  𝛿 𝑉 𝑛 ≥  𝐾. 

Hence, for each 𝛿 >  0, there exists a natural number 𝐾 such that  

         𝑎𝑛  𝜀 (𝑐 −  𝛿, 𝑐 +  𝛿) 𝑉 𝑛 ≥  𝐾 with 𝑎𝑛  ≠  𝑐. 

Hence, for each 𝛿 >  0, there exists a nbd 𝑉(𝑐) of 𝑐 containing a point of 𝐴 

distinct from 𝑐; and hence, 𝑐 is a cluster point of 𝐴. 

The proof is now complete.                
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Let us look at a few more examples. 

 

Example 6: Show that the set ℕ of natural numbers has no cluster point.  

Solution: The neighbourhood (𝑛 −
1

2
, 𝑛 +

1

2
) of any natural number 𝑛 contains 

no point of ℕ other than 𝑛, and therefore, 𝑁 has no cluster point.  

Example 7: Prove that the set 𝐴4 =  {1/𝑛: 𝑛 𝜀 ℕ} has only cluster point 0. 

Solution: This is clear since for each 𝛿 >  0, the nbd (−𝛿, 𝛿) of 0 contains 

infinitely many points of 𝐴4. This is because for each 𝛿 >  0, there exists a 

natural number 𝑛 such that 0 <  1/𝑛 <  𝛿, that is, 1/𝑛 є (−𝛿, 𝛿). Further, no 

point of 𝐴4 can be a cluster point of 𝐴4 because any sequence in 𝐴4 

converges to 0. Hence, by theorem 1, no point of 𝐴4 is a cluster point of 𝐴4. 

Hence, 0 is the only cluster point of𝐴4. 

Example 8: Let 𝑥𝑛 = 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 5, 1, 2, 3, 4, 5, …. Find the cluster 

points of this sequence 𝑥𝑛 . 

Solution: The given sequence in set theoretic form corresponds to the finite 

set 𝑆 = {1, 2, 3, 4, 5}. Hence, the only cluster points of the sequence are the 

members of this set 𝑆.    

I.Q.2 

We are now ready to take up the concept of limit of a function at a point. 

 

4. Limit of a function at a point: 

4.1 Definition: Let 𝐴 ⊆ ℝ. Let 𝑐 be a cluster point of 𝐴. For a function 

𝑓 ∶  𝐴 → ℝ, a real number 𝐿 is said to be a limit of 𝑓 at 𝑐, if given any 𝜖 >  0, 

there exists a  𝛿 >  0 such that if 𝑥 є 𝐴 and 0 < |𝑥 − 𝑐|  <  𝛿, then |𝑓(𝑥) − 𝐿| <  𝜖. 

Value Addition: Remarks 
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I.Q.3 

I.Q.4 

First of all, we show that the value 𝐿 of the limit is unique at each point 𝑐, 

whenever it exists.  

Theorem 2: If 𝑓 ∶  𝐴 → ℝ and if 𝑐 is a cluster point of 𝐴, then 𝑓 can have only 

one limit at 𝑐. 

Proof: Suppose, there are two limits 𝐿 and 𝐿’ of 𝑓 at 𝑐. We shall show that 

 𝐿 = 𝐿’.  

 

Since, 𝐿 and 𝐿’ are limits 𝑓 at 𝑐, therefore, for any 𝜖 >  0, there exist a 𝛿 >  0 

and a 𝛿’ >  0   such that for 𝑥 𝜀 𝐴, 

 whenever 0 < |𝑥 − 𝑐|  <  𝛿, we have: |𝑓(𝑥) − 𝐿|  <  𝜖 /2;   

and 

 whenever 0 < |𝑥 − 𝑐|  <  𝛿’, we have: |𝑓(𝑥) − 𝐿’| <  𝜖 /2. 

So, let 

 𝛿’’ = 𝑚𝑖𝑛 { 𝛿, 𝛿’}.  

Then, for 𝑥 𝜀 𝐴, whenever 0 < |𝑥 − 𝑐|  <  𝛿’’, one has by the triangle inequality: 

  𝐿 − 𝐿’ ≤   𝐿 − 𝑓 𝑥  +   𝑓 𝑥 − 𝐿’  

   <
𝜖

2
 +

𝜖

2
=  𝜖; 

and since 𝜖 >  0 was arbitrary, we conclude that 𝐿 = 𝐿’.  

 The inequality 0 < |𝑥 − 𝑐|  <  𝛿 simply says: 𝑥 ≠  𝑐. 

 The value of 𝛿 usually depends upon the value of 𝜖. 

 When 𝐿 is the limit of 𝑓 at 𝑐, we also say that 𝑓 converges to 𝐿 at 𝑐; 

and we write this as:  

         lim ( )
x c

f x L


 .  

 If, however, limit of 𝑓 at 𝑐 does not exist, we say that 𝑓 diverges at 

𝑐. 
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This completes the proof. 

Let us illustrate the definition of limit using some basic examples. 

Example 9: Show that ∀ 𝑐 𝜀 ℝ,  lim𝑥→𝑐 𝑏 = 𝑏. 

Solution: Let 𝑓(𝑥) = 𝑏 for all 𝑥 𝜀 ℝ. Let 𝜖 >  0 be arbitrary. Then, for 𝛿 = 1, 

we see that whenever 

 0 <  |𝑥 − 𝑐|  <  𝛿 = 1,  

we have, 

 |𝑓(𝑥) − 𝑏| = |𝑏 − 𝑏| = 0 <  𝜖.  

Since, є > 0 was arbitrary, we conclude that ∀ 𝑐 𝜀 ℝ, lim𝑥→𝑐 𝑓(𝑥) = lim𝑥→𝑐 𝑏 = 𝑏. 

 

Example 10: Show that ∀ 𝑐 𝜀 ℝ, lim𝑥→𝑐 𝑥2 = 𝑐2. 

Solution: Let 𝑕(𝑥) = 𝑥2 for all 𝑐 𝜀 ℝ. Let 𝜖 >  0 be arbitrary. Now, if 

 |𝑥 − 𝑐| < 1, 

then, we have,  

 |𝑥| ≤ |𝑐| + 1  

and therefore, 

 |𝑥 + 𝑐| ≤ |𝑥| + |𝑐| ≤ |𝑐| + 1 + |𝑐| = 2|𝑐| + 1. 

We now observe that 

 |𝑕(𝑥) − 𝑐2| = |𝑥2 − 𝑐2| = |𝑥 + 𝑐||𝑥 − 𝑐| ≤ (2|𝑐| + 1)(|𝑥 − 𝑐|)  

and 

 (2|𝑐| + 1)(|𝑥 − 𝑐|) <  𝜖 , if    |𝑥 − 𝑐|  <  𝜖/ (2|𝑐| + 1).   

So, we take 𝛿 =
𝜖

2|𝑐|+1
> 0. 

Hence, we see that given 𝜖 >  0, there exists a 𝛿 =
𝜖

2|𝑐|+1
> 0 such that 

whenever 

 0 <  |𝑥 − 𝑐|  <  𝛿,  

we have, 

 |𝑕(𝑥) − 𝑐2|  <  𝜖.  

Since, 𝜖 >  0 was arbitrary, we conclude that 

 ∀ 𝑐 𝜀 ℝ, lim𝑥→𝑐 𝑥2 = 𝑐2. 
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Example 11: Let 𝑓:  0, ∞ \{9} ⟶ ℝ be 𝑓 𝑥 =
𝑥−9

 𝑥−3
. Then, show that 

lim
𝑥→9

𝑓 𝑥 = 6. 

Solution: Let 𝜖 >  0 be arbitrary. We observe that ∀ 𝑥 𝜀 𝐴 =  0, ∞ \{9}, 

  𝑓 𝑥 − 6 = |
𝑥−9

 𝑥−3
− 6| 

       = |
  𝑥+3 ( 𝑥−3)

 𝑥−3
− 6| 

       =  | 𝑥 + 3 − 6| 

         =  | 𝑥 − 3| 

         = |
𝑥−9

 𝑥+3
| ≤

1

3
|𝑥 − 9| < 𝜖, if |𝑥 − 9| < 3𝜖. 

So, we take 𝛿 = 3𝜖 > 0. Hence, we see that given 𝜖 >  0, there exists a 

𝛿 = 3𝜖 > 0 such that whenever 0 <  |𝑥 − 9|  <  𝛿, we have 

  𝑓 𝑥 − 6 < 𝜖 

so that lim𝑥→9 𝑓 𝑥 = 6. 

I.Q.5 

I.Q.6 

I.Q.7 

We shall now study the sequential criterion for limits.  

5. The Sequential Criterion: 

5.1 Theorem 2 (The Sequential Criterion): Let 𝑓 ∶  𝐴 → ℝ and 𝑐 be a 

cluster point of 𝐴. Then the following are equivalent: 

(i) lim𝑥→𝑐 𝑓(𝑥) = 𝐿 . 

(ii) For every sequence (𝑥𝑛 ) in 𝐴 that converges to 𝑐 such that 𝑥𝑛  ≠  𝑐 for 

all 𝑛 є 𝑁, the sequence (𝑓(𝑥𝑛)) converges to 𝐿. 

Proof: (𝒊)  ⇒ (𝒊𝒊):  

Here, we show that 𝑓(𝑥𝑛) → 𝐿 as 𝑛 → ∞.  

So, let 𝜖 >  0 be arbitrary but fixed. 

Since, lim𝑥→𝑐 𝑓(𝑥) = 𝐿, there exists a 𝛿 >  0 such that whenever any 𝑥 𝜀 𝐴 

satisfies    

 0 <  |𝑥 − 𝑐|  <  𝛿,  
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then, 𝑓(𝑥) satisfies 

 |𝑓(𝑥) − 𝐿| <  𝜖.  

Since the sequence 𝑥𝑛  converges to c, we have the following: 

For 𝛿 >  0, there exists a natural number 𝐾(𝛿) = 𝐾 such that for 𝑛 ≥  𝐾:       

 |𝑥𝑛 − 𝑐| <  𝛿 

and, since 𝑥𝑛  ≠  𝑐 for all 𝑛 𝜀 ℕ, one has: 

 0 <  |𝑥𝑛 − 𝑐| <  𝛿 for all 𝑛 ≥  𝐾. 

But, for each such 𝑥𝑛 , we have 

 |𝑓(𝑥𝑛) − 𝐿| <  𝜖. 

That is, for any 𝛿 >  0, there exists a natural number 𝐾 such that 

 |𝑓(𝑥𝑛) − 𝐿| <   𝜖 for all 𝑛 ≥  𝐾. 

Hence, the sequence (𝑓(𝑥𝑛)) converges to 𝐿. 

 

(𝒊𝒊)  ⇒  (𝒊):  

We shall show the contra-positive argument: If (𝒊) is not true, then, (𝒊𝒊) is 

not true. So, let (𝒊) does not hold. Then, 

 lim𝑥→𝑐 𝑓(𝑥) ≠ 𝐿. 

This means that there exists an 𝜖 > 0 such that for every 𝛿 >  0, one has 

some 𝑥  𝜀 𝐴 and 𝑥 ≠  𝑐 such that 

         0 <  |𝑥 − 𝑐| <  𝛿  but |𝑓(𝑥) − 𝐿| ≥  𝜖. 

Hence, for every natural number 𝑛, there exists some 𝑥𝑛  in 𝐴 with 𝑥𝑛  ≠  𝑐 

such that  

 0 <  |𝑥𝑛 − 𝑐| <  1/𝑛  

but  

 |𝑓(𝑥𝑛) − 𝐿| ≥  𝜖 ∀ 𝑛 𝜀 ℕ. 

Hence, there exists an 𝜖 > 0 such that ∀ 𝑛 𝜀 ℕ, one has:  |𝑓(𝑥𝑛) − 𝐿| ≥  𝜖. 

This implies that the sequence 𝑓(𝑥𝑛) does not converge to 𝐿; that is (𝒊𝒊) fails 

to be true. 

This completes the contra-positive argument. 
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Hence, (𝒊𝒊) ⇒ (𝒊). 

The proof is now complete. 

I.Q.8 

We shall now investigate the conditions for the divergence of a function 𝑓 at 

a cluster point of its domain. 

6. The Divergence Criteria:  

Sometimes it becomes important to show that a certain number is not the 

limit of the function at a point. For this purpose, we have the divergence 

criteria. (The proof is omitted.) 

Theorem 4 (The Divergence Criterion): Let 𝑓 ∶  𝐴 → ℝ  and 𝑐 be a cluster 

point of 𝐴. 

(a) If 𝐿 𝜀 ℝ, then 𝑓 does not have a limit 𝐿 at 𝑐 if, and only if, there 

exists a sequence (𝑥𝑛) in 𝐴 with 𝑥𝑛  ≠  𝑐 for all 𝑛 𝜀 ℕ such that the 

sequence (𝑥𝑛) converges to 𝑐 but the sequence (𝑓(𝑥𝑛)) does not 

converge to 𝐿.  

 

(b) The function 𝑓 does not have a limit at 𝑐 if, and only if, there exists 

a sequence (𝑥𝑛) in 𝐴 with 𝑥𝑛  ≠  𝑐 for all 𝑛 𝜀 ℕ  such that the sequence 

(𝑥𝑛) converges to 𝑐 but the sequence (𝑓(𝑥𝑛)) does not converge in 

ℝ. 

Let us illustrate the divergence criterion in some examples. 

Example 12: Show that lim𝑥→0
1

𝑥
 does not exist. 

Solution: Let 𝑓(𝑥) = 1/𝑥. Here, 𝑐 = 0. We consider the sequence 

 𝑥𝑛 =
1

𝑛
 , ∀ 𝑛 ε ℕ.  

Then,  

 𝑥𝑛  ≠  𝑐 ∀ 𝑛 𝜀 𝑁 

 and 

 𝑥𝑛  →  0 
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, that is, 

 𝑥𝑛  →  𝑐.  

But, the sequence 𝑓(𝑥𝑛) = 𝑛 does not converge in ℝ. 

Hence, by the theorem 4(b), the limit lim𝑥→0
1

𝑥
 does not exist. 

Example 13: Prove that the lim𝑥→0 𝑠𝑔𝑛 (𝑥) does not exist. 

Solution: Here, the symbol 𝑠𝑔𝑛 (𝑥) stands for the famous signum function 

defined by 

 𝑓 𝑥 = 𝑠𝑔𝑛 𝑥 =  

1, 𝑓𝑜𝑟 𝑥 > 0
0, 𝑓𝑜𝑟 𝑥 = 0

−1, 𝑓𝑜𝑟 𝑥 < 0

  

We consider the sequence 

 𝑥𝑛 =
 −1 𝑛

𝑛
, ∀ 𝑛 ε ℕ . 

Then, 

 lim(𝑥𝑛) = 0. 

However, since 

 𝑓 𝑥𝑛 = 𝑠𝑔𝑛(𝑥𝑛) =  (−1)𝑛 , ∀ 𝑛 ε ℕ,  

we see that the sequence (𝑓 𝑥𝑛 ) obviously fails to converge in ℝ.  

Hence, by theorem 4(b), the limit lim𝑥→0 𝑠𝑔𝑛 (𝑥) does not exist. 

 

The next example is a very famous and an important counterexample in all 

of analysis. 

 

Example 14: Prove that ∀ 𝑥 𝜀 ℝ\{0}, lim𝑥→0 sin(
1

𝑥
) does not exist. 

Solution: Let 

 𝑔(𝑥) =  𝑠𝑖𝑛(1/𝑥) ∀ 𝑥 𝜀 ℝ\{0}. 

To show that the given limit does not exist, we produce two sequences (𝑥𝑛) 

and (𝑦𝑛) in  ℝ\{0} such that 𝑙𝑖𝑚(𝑥𝑛) = 𝑙𝑖𝑚(𝑦𝑛 ) but  𝑙𝑖𝑚((𝑔(𝑥𝑛) ≠ 𝑙𝑖𝑚(𝑔(𝑦𝑛)). 

We consider the sequences 

 𝑥𝑛 =
1

𝑛𝜋
  and 𝑦𝑛 =

1
𝜋

2
+2𝑛𝜋

 ∀ 𝑛 𝜀 ℕ. 
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Then, clearly, 

 𝑥𝑛  ≠  0 and 𝑦𝑛  ≠  0 ∀ 𝑛 𝜀 ℕ 

and 

 𝑙𝑖𝑚(𝑥𝑛) = 𝑙𝑖𝑚(𝑦𝑛) = 0. 

But, 

 𝑙𝑖𝑚((𝑔(𝑥𝑛)) = 𝑙𝑖𝑚⁡(sin(𝑛𝜋)) = 𝑙𝑖𝑚⁡(0) = 0  

and  

 𝑙𝑖𝑚((𝑔(𝑦𝑛)) = 𝑙𝑖𝑚⁡(sin(
𝜋

2
+ 2𝑛𝜋)) = 𝑙𝑖𝑚⁡(sin(

𝜋

2
)) = lim⁡(1) = 1.  

Hence, the limit lim𝑥→0 sin(
1

𝑥
) does not exist for any 𝑥 𝜀 ℝ\{0}. 

Example 15: Show that ∀ 𝑥 𝜀 ℝ, lim𝑥→∞ cos⁡(
𝜋

3
𝑥) does not exist. 

Solution: The divergence of the corresponding sequence 𝑢𝑛 = cos⁡(
𝜋

3
𝑛) 

proves the desired non-existence of the limit. To see that the sequence 𝑢𝑛  is 

divergent, it is enough to produce two subsequences converging to different 

limits. Here are the two subsequences: 

 𝑢6𝑛+1 = cos  
𝜋

3
 6𝑛 + 1  = cos  2𝑛𝜋 +

𝜋

3
 = cos  

𝜋

3
 =

1

2
⟶

1

2
 as 𝑛 ⟶ ∞;  

and 

 𝑢6𝑛+3 = cos  
𝜋

3
 6𝑛 + 3  = cos 2𝑛𝜋 + 𝜋 = cos 𝜋 = −1 ⟶ −1 as 𝑛 ⟶ ∞. 

 

Example 16: Prove that the limit lim𝑥⟶∞ 𝑒−𝑥 + 2cos⁡(3𝑥)does not exist. 

Solution: Let 𝑓 𝑥 = 𝑒−𝑥 + 2 cos 3𝑥  ∀ 𝑥 𝜀 ℝ. Once again, to show that the 

given limit does not exist, we produce two sequences (𝑥𝑛 ) and (𝑦𝑛) in ℝ such 

that 𝑙𝑖𝑚(𝑥𝑛) = 𝑙𝑖𝑚(𝑦𝑛) but 𝑙𝑖𝑚((𝑓(𝑥𝑛) ≠ 𝑙𝑖𝑚(𝑓(𝑦𝑛)).  

We consider the sequences 

 𝑥𝑛 = 2𝑛𝜋  and 𝑦𝑛 = 2𝑛𝜋 + 𝜋 ∀ 𝑛 𝜀 ℕ. 

Then,  

 𝑙𝑖𝑚(𝑥𝑛) = 𝑙𝑖𝑚(𝑦𝑛) = ∞; 

but 
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 𝑙𝑖𝑚( 𝑓 𝑥𝑛  = 𝑙𝑖𝑚[𝑒−2𝑛𝜋 + 2 cos 6𝑛𝜋 ] = 2 

and  

 𝑙𝑖𝑚( 𝑓 𝑦𝑛  = 𝑙𝑖𝑚[𝑒−2𝑛𝜋−2𝜋 + 2 cos 6𝑛𝜋 + 3𝜋 ] = − 2. 

Hence, the limit lim𝑥⟶∞ 𝑒−𝑥 + 2cos⁡(3𝑥)does not exist. 

 

I.Q.9 

I.Q.10 

I.Q.11 

 

7. Summary: 

1. The concept of limit of functions can be easily understood in terms of 

cluster point of a set. 

2. A real number 𝑐 is a cluster point of a set 𝐴 ⊆ ℝ  if every 

neighbourhood of the point 𝑐 contains a point of 𝐴 distinct from 𝑐. 

3. Thus, a real number 𝑐 is a cluster point of set 𝐴 if for every 𝛿 >  0, the 

𝛿-neighborhood (𝑐 −  𝛿, 𝑐 +  𝛿) of 𝑐 contains a point of the set 𝐴 different 

from 𝑐. 

4. A cluster point of a set need not belong to that set. 

5. A number 𝑐 𝜀 ℝ is a cluster point of a set 𝐴 ⊆ ℝ  if, and only if, there 

exists a sequence (𝑎𝑛) in 𝐴 such that 𝑙𝑖𝑚(𝑎𝑛) = 𝑐 and 𝑎𝑛  ≠ 𝑐 ∀ 𝑛 𝜀 ℕ. 

6. Limit of a function at a point: Let 𝑐 be a cluster point of the set 𝐴. 

For a function 𝑓 ∶  𝐴 → ℝ, a real number 𝐿 is said to be a limit of 𝑓 at 𝑐, 

if given any  𝜖 >  0, there exists a 𝛿 >  0  such that if 𝑥 𝜀 𝐴 and         

0 <  |𝑥 − 𝑐| <  𝛿 , then |𝑓(𝑥) − 𝐿| <  𝜖. 

7. Limit, if exists, is unique at cluster points: If 𝑓: 𝐴 → ℝ and if 𝑐 is a 

cluster point of 𝐴, then 𝑓 can have only one limit at 𝑐. 

8. The Sequential Criterion: Let 𝑓: 𝐴 →  ℝ and 𝑐 be a cluster point of 𝐴. 

Then the following are equivalent: 

(i) lim𝑥→𝑐 𝑓(𝑥) = 𝐿 
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(ii) For every sequence (𝑥𝑛 ) in 𝐴 that converges to 𝑐 such that 

𝑥𝑛  ≠  𝑐 ∀ 𝑛 𝜀 ℕ, the sequence (𝑓(𝑥𝑛)) converges to 𝐿.  

9. The Divergence Criterion: Let 𝑓: 𝐴 →  ℝ and 𝑐 be a cluster point of 𝐴. 

(a) If 𝐿 𝜀 ℝ, then 𝑓 does not have a limit 𝐿 at 𝑐 if and only if there 

exists a sequence (𝑥𝑛) in 𝐴 with 𝑥𝑛  ≠  𝑐 ∀ 𝑛 𝜀 ℕ such that the 

sequence (𝑥𝑛) converges to 𝑐 but the sequence (𝑓(𝑥𝑛)) does not 

converge to 𝐿.  

(b) The function 𝑓 does not have a limit at 𝑐 if, and only if, there 

exists a sequence (𝑥𝑛) in 𝐴 with 𝑥𝑛  ≠  𝑐 for all 𝑛 є 𝑁 such that the 

sequence (𝑥𝑛) converges to 𝑐 but the sequence (𝑓(𝑥𝑛)) does not 

converge in 𝑅. 

Exercises 

1. Find the set of cluster points of each of the following subsets of ℝ: 

(i)  𝑆 = {𝑥|𝑥 ∉ ℚ,  2 < 𝑥 < 100} 

(ii)  𝑆 =   𝑥 𝑥 ∉ ℚ,  2 ≤ 𝑥 < 109     {𝑥 |𝑥 𝜀 ℤ, 50 < 𝑥 < 1999} 

(iii) 𝑆 =   −1 𝑛 2𝑛−1

𝑛
 𝑛 𝜀 ℕ  

(iv)   𝑆 =  3,6 ∪ (6,8) 

2. Using the definition of limits or the sequential criterion, show that: 

 

(i) 𝑙𝑖𝑚𝑥→2 𝑥2 + 4𝑥 = 12 

 

(ii) 𝑙𝑖𝑚𝑥→1
𝑥

1+𝑥
=

1

2
 

 

(iii)  𝑙𝑖𝑚𝑥→𝑐 𝑥3 = 𝑐3 

 

(iv)  𝑙𝑖𝑚𝑥→2
1

1−𝑥
= −1 

 

3. Using the divergence criterion, prove that the following limits do not 

exist. 

 

(i) 𝑙𝑖𝑚𝑥→0
1

𝑥2
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(ii) 𝑙𝑖𝑚𝑥→0
1

 𝑥
 

 

(iii) 𝑙𝑖𝑚𝑥→0 sin(
1

𝑥2) 

 

4. The function 𝑦 = 𝑓(𝑥) is graphed as shown.  

 

Conclude in true/false about the following assertions regarding this 

function. 

(i)  
0

lim ( ) 0
x

f x


 . 

(ii) 
0

lim ( ) 1
x

f x


 . 

(iii) 
1

lim ( ) 1
x

f x


 . 

(iv) 
1

lim ( ) 0
x

f x


 . 

 

5. The function 𝑦 = 𝑓(𝑥) is graphed as shown. 
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Conclude in true/false about the following assertions regarding this 

function. 

(i) 
2

lim ( )
x

f x


 does not exist. 

(ii) 
2

lim ( ) 2
x

f x


 . 

(iii) 
1

lim ( )
x

f x


 does not exist. 

(iv) 
0

lim ( )
xx

f x


 exists at every point 𝑥0 in (−1, 1). 

(v) 
0

lim ( )
xx

f x


 exists at every point 𝑥0 in (1, 3). 

Glossary: 

Cluster Point, Limit, Sequence, Convergence Criterion, Divergence Criterion, 

Signum Function   

 

Further Reading: 

It is always welcome to practice more exercises from various books available 

in libraries and elsewhere. Here are a few more references for this purpose. 

(i) Introduction to Analysis(5/e) by Edward D. Gaughan, American 

Mathematical Society. 

(ii) Mathematical Analysis(2/e) by T.M. Apostol, Narosa Publishing House. 

(iii) A Course in Calculus and Real Analysis by  Sudhir R. Ghorpade & 

Balmohan V. Limaye, Springer-Verlag. 

Hints & Solutions For Exercises 

 

1. (i) The set of cluster points is the closed interval [ 2, 100]. 

 (ii) The set of cluster points is the closed interval [ 2, 109]. 

 (iii) The set of cluster points is the finit set {2, −2}. 

 (iv) The set of cluster points is the closed interval [3, 8]. 

2.  (i) Let 0 < |𝑥 − 2| < 1. Then, 

   |𝑥2 + 4𝑥 − 12| = |(𝑥 + 6)(𝑥 − 2)| < 9|𝑥 − 2| <  𝜖, 

http://www.ams.org/bookstore-getitem/item=amstext-1
http://link.springer.com/search?facet-author=
http://link.springer.com/search?facet-author=
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      if 

     0 < |𝑥 − 2|  <  𝛿 =  𝜖/9.  

So, let 𝜖 >  0 be given to be arbitrary. Then, for 𝛿 =  𝜖/9, we observe 

that, 

   | 𝑥2 + 4𝑥 − 12| < 𝜖,  

      whenever, 0 < |𝑥 − 2|  <  𝛿. 

Hence,𝑙𝑖𝑚𝑥→2 𝑥2 + 4𝑥 = 12. 

  (ii) Let 0 < |𝑥 − 1| < 1. Then,  

   1 < 𝑥 < 2, 

      so that 

     |(𝑥/1 + 𝑥) − 1/2| = |𝑥 − 1|/4 < 𝜖, 

      if  

    0 < |𝑥 − 1| <  𝛿 =  𝜖/4.  

      So, let 𝜖 >  0 be given to be arbitrary. Then, for 𝛿 =  𝜖/4, we     

       observe that, 

  |(𝑥/1 + 𝑥) − 1/2|  < 𝜖, 

        whenever, 0 < |𝑥 − 1| <  𝛿. 

       Hence, 𝑙𝑖𝑚𝑥→1
𝑥

1+𝑥
=

1

2
. 

 (iii) Let 0 < |𝑥 − 𝑐| < 1. Then, 

  |𝑥| < 1 + |𝑐|.  

       Hence, 

  𝑥3 − 𝑐3 = |(𝑥 − 𝑐)(𝑥2 + 𝑐𝑥 + 𝑐2|  

     = |𝑥 − 𝑐||{ 𝑥 − 𝑐 2 + 3𝑐𝑥}|   

                  ≤ |𝑥 − 𝑐|{ 𝑥 − 𝑐 2 + 3|𝑐𝑥|} 

              < |𝑥 − 𝑐|(1 + 3|𝑐||𝑥|) 

              < |𝑥 − 𝑐|(1 + 3|𝑐| + 3|𝑐|2) 

      < 𝜖, 

  if  0 < |𝑥 − 𝑐| <  𝛿 = 1/(1 + 3|𝑐| + 3|𝑐|2). 

  So, let 𝜖 > 0 be given to be arbitrary. Then, for 
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   𝛿 = 1/(1 + 3|𝑐| + 3|𝑐|2),  

  we observe that 

    |𝑥3 − 𝑐3| < 𝜖, whenever, 0 < |𝑥 − 𝑐| <  𝛿.   

  Hence, 𝑙𝑖𝑚𝑥→𝑐 𝑥3 = 𝑐3. 

3.  (i)  Hint: Take 𝑥𝑛 = 1/𝑛2, ∀ 𝑛 𝜀 ℕ. 

 (iii)    Hint: Take 𝑥𝑛 = (2𝑛𝜋)−
1

2 and 𝑦𝑛 =  
𝜋

2
+ 2𝑛𝜋 

−
1

2
, ∀ 𝑛 𝜀 ℕ. Now, follow  

  example 11. 

4. (i)  True 

(ii)  False 

(iii) False. In fact, the limit does not even exist. 

(iv) False 

5.  (i) False, because the limit exists and equals 1. 

(ii) True 

(iii) True 

(iv) False, because at 𝑥0 = −1, only the right hand limit exists. 

(v) True 


