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1. Learning outcomes:  

After studying this chapter you should be able to understand the 

 Direct methods to solve the system of linear equations 
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 Doolittle's method 
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 Pivoting 
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 Error Analysis for Direct Methods 
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2. Introduction: 

 Consider a system of n linear algebraic equations in n unknowns 

1 2, , . . . , nx x x .  

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

. . .

. . .

. . . . . . .

. . .

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   

   (1) 

where ( 1,2,..., & 1,2, ..., )ija i n j n   are the known coefficients, ( 1,2,..., )ib i n  are 

the known values and ( 1,2,..., )ix i n are the unknowns to be determined. 

 Above system of linear equations may be represented at the matrix 

equations as follow 

 AX b   

where 

 

1 1

11 12 1 2 2

21 22 2

1 2

. . .

. . . . .
,

. .. . . . . .

. .. . .

n

n

n n nn

n n

x b

a a a x b

a a a
A X and b

a a a

x b

   
   

     
     
      
     
     
 

   
      

  

The system of equations given above is said to be homogeneous if all the 

( 1,2,..., )ib i n  vanish otherwise it is called as non-homogeneous system of 

equations. 

By finding a solution of a system of equations we mean to obtain the value of  

1 2, , . . . , nx x x  such that they satisfy the given equations and a solution vector of 

system of equations (1) is a vector X whose components constitute a solution of 

(1) 

There are two types of numerical methods to solve the above system of 

equations 

(I) Direct Methods: direct methods such as Gauss Elimination method, in such 

methods the amount of computation to get a solution can be specified in 

advance. 
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(II) Indirect or Iterative Methods: Such as Gauss-Siedel Methods, in such 

methods we start from a (possibly crude) approximation and improve it stepwise 

by repeatedly performing the same cycle of composition with changing data. 

3. Direct Methods to Solve the System of Linear Equations: 

 The necessary and sufficient condition for the existence of a solution of 

the system of equations 

 AX b   

where 

 

1 1

11 12 1 2 2

21 22 2

1 2

. . .

. . . . .
,

. .. . . . . .

. .. . .

n

n

n n nn

n n

x b

a a a x b

a a a
A X and b

a a a

x b

   
   

     
     
      
     
     
 

   
      

 

is that 

 Rank [A] = Rank [A : b] 

or we can say that rank of the coefficient matrix is the same as the rank of the 

augmented matrix. 

Value Addition: Existence of a Solution of the Equation AX=b 

(I) if 0 det 0ib and A  , then there exist infinite number of non-trivial solutions 

besides trivial solution X = 0. 

(II) If 0 det 0ib and A  , then the system has the only unique trivial solution X 

= 0. In this case Rank (A) = n (Number of variables). 

(III) If 0 det 0ib and A  , then the system has only unique solution and in this 

case Rank (A) = n (Numbers of variables). 

(IV) If 0 det 0ib and A  , then there exist infinite number of solutions provided 

the equations are consistent. In this case we have Rank (A) < n. 

 

3.1. Method of Solution using Inverse of the Matrix: 

Consider the system of linear equations 

 AX = b  (1) 

We know that A is an invertible matrix iff det 0A . Now if A is invertible matrix, 

then from equation (1), we have 

 
1 1  A AX A b    
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   
1  X A b  

where 

 
1 1

Adj
det

A A
A

    

   
Adj

d
  

et
X

A
b

A
  

Hence solution is determined. 

3.2. Cramer's Rule: 

Consider the system of linear equations 

 AX b   

where 

 

1 1

11 12 1 2 2

21 22 2

1 2

. . .

. . . . .
,

. .. . . . . .

. .. . .

n

n

n n nn

n n

x b

a a a x b

a a a
A X and b

a a a

x b

   
   

     
     
      
     
     
 

   
      

 

then the jth component of the solution vector X is determined by 

 
det

det

j

j

A
x

A
   

where det jA  is the determinant obtained by replacing jth column of det A by b, 

i.e. 

 

11 12 1( 1) 1 1( 1) 1

21 22 2( 1) 2 2( 1) 2

1 2 n( 1) n( 1)

... ...

... ...

. . ... . . . ... .

... ...

j j n

j j n

j

n n j n j nn

a a a b a a

a a a b a a
A

a a a b a a

 

 

 

 
 
 


 
 
  

. 

 

Value Addition 

Cramer's Rule is feasible only when n = 2, 3 or 4 only. 

 

Example 1: Solve the systems of linear equations  
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3 2 2 3

2 3 3

2 4

x y z

x y z

x y z

  

   

  

  

using inverse of the matrix method. 

Solution: Given system of equations is 

 AX = b 

where 

 

3 1 2 3

2 3 1 , 3

1 2 1 4

x

A X y and b

z

     
     

     
     
          

  

   

3 1 2

det 2 3 1 8

1 2 1

A A      

 

1 3 5

3 1 7

7 5 11

adj A

 
 

 
 
   

  

   1

1 3 5
1 1

3 1 7
8

7 5 11

A adj A
A



 
 

  
 
   

 

   1

1 3 5 3 1
1

3 1 7 3 2
8

7 5 11 4 1

X A b

     
     

    
     
            

 

Thus, 

 1, 2 1.x y and z      

Example 2: Solve the systems of linear equations  

 

2 2

3 6 1

3 3 2 3

x y z

x y z

x y z

  

  

  

  

using Cramer's Rule. 

Solution: Given system of equations is 
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 AX = b  (1) 

where 

   

1 2 1 2

3 6 1 , 1

3 3 2 3

x

A X y and b

z

     
     

  
     
          

  

   

1 2 1

det 3 6 1 12

3 3 2

A A



     

Also 
1 2 3

2 2 1 1 2 1 1 2 2

1 6 1 , 3 1 1 3 6 1

3 3 2 3 3 2 3 3 3

A A and A

      
     

  
     
          

  

   
1 2 3

2 2 1 1 2 1 1 2 2

1 6 1 35, 3 1 1 13 3 6 1 15

3 3 2 3 3 2 3 3 3

A A and A

 

         

Using Cramer's rule we have 

   1 2 335 13 15
,

12 12 12

A A A
x y and z

A A A


        

Thus, 

 
35 13 5

, .
12 12 4

x y and z      

4. Method of Factorization (Triangularization Method): 

This method is also known as decomposition method. This method is based on 

the fact that a square matrix A can be factored into the product of a lower 

triangular matrix L and an upper triangular matrix U, if all the principal minors of 

A are non-singular, i.e. if 

 

11 12 13

11 12

11 21 22 22

21 22

31 32 33

0, 0, 0, etc.

a a a
a a

a a a a
a a

a a a

     

Thus, the matrix A can be expressed as 

 A = LU  (1) 

where 
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11 12 13 111

22 23 221 22

31 32 33 33 3

1 2 3

. . .0 0 . . . 0

0 . . .0 . . . 0

. . . 0 0 0 . . .

. . . . . . . . . . . . . .

. . . 0 0 0 . . .

n

n

n

n n n nn nn

u u u ul

u u ul l

L l l l and U u u

l l l l u

  
  
  
   
  
  
  

   

  

Using the matrix multiplication rule to multiply the matrices L and U and 

comparing the elements of the resulting matrix with those of A we obtain 

 
1 1 2 2 . . . ( 1,2, ..., 1,2,..., )i j i j in nj ijl u l u l u a i n and j n        

where 

 0 0ij ijl if i j and u if i j      

this system of equations involves 
2n n  unknowns. Thus there are n parameters 

family of solutions. To produce a unique solution it is convenient to choose either 

 1 1 1,2,...,ii iiu or l i n    

Now, 

4.1. Doolittle's method: 

 If we take 1iil  , in the factorization method then the factorization method 

is called Doolittle's method. 

Now if 1iil  , then we have 

 

11 12 13 1

22 23 221

31 32 33 3

1 2 3

. . .1 0 0 . . . 0

0 . . .1 0 . . . 0

1 . . . 0 0 0 . . .

. . . . . . . . . . . . . .

. . . 1 0 0 0 . . .

n

n

n

n n n nn

u u u u

u u ul

L l l and U u u

l l l u

  
  
  
   
  
  
  

   

  

thus, for the system of equations 

 AX = b  (2) 

We have 

 LUX = b  (3) 

Putting UX = y in equation (3), we have 

 Ly = b  (4) 
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On solving equation (4) by forward substitution, we find the vector y now solve 

the system of equations 

 UX = b 

by backward substitution we get the values 

 1 2, , . . ., nx x x . 

We have 

 UX = y 

and Ly = b 

   1 1y L b and x U y     

Thus the inverse of A can also be determined as 

 
1 1 1A U L   . 

Example 3: Solve the system of equations  

 

2 3 9

2 3 6

3 2 8

x y z

x y z

x y z

  

  

  

  

using factorization method (Doolittle's method). 

Solution (Doolittle's method): We have system of equations 

 AX = b  (1) 

where 

 

2 3 1 9

1 2 3 , 6

3 1 2 8

x

A X y and b

z

     
     

  
     
          

 

Now let 

 A = L U   (2) 

where 

 

11 12 13

21 22 23

31 32 33

1 0 0

1 0 0

1 0 0

u u u

L l and U u u

l l u

  
  

 
  
     

  

Thus from equation (2) we have 
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 L U = A  

   

11 12 13

21 22 23

31 32 33

1 0 0 2 3 1

1 0 0 1 2 3

3 1 21 0 0

u u u

l u u

l l u

    
    


    
        

 

  

11 12 13

21 11 21 31 11 31

21 12 22 22 21 13 23 23

31 12 32 22 32 31 13 32 23 33 33

2, 3, 1

1 3
1 3

2 2

1 5
2 3

2 2

1 7 2 18

u u u

l u l and l u l

l u u u and l u u u

l u l u l and l u l u u u

  

     

       

         

  

Thus, we have 

 

1 0 0 2 3 1

1 1 5
1 0 0

2 2 2

3 0 0 18
7 1

2

L and U

 
   
   
    
   
   

  
 

 

Now using equation (1) and (2) we have 

 LUX = b 

Let 

 UX=Y  (3) 

where 

1

2

3

y

Y y

y

 
 


 
  

 

  LY = b 

   

1

2

3

1 0 0
9

1
1 0 6

2
8

3
7 1

2

y

y

y

 
 

    
     
    
       

 
 
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  

1

1 2

1 2 3

9

1
6

2

3
7 8

2

y

y y

y y y



 

  

 

On solving using forward substitution we have 

 1 2 3

3
9, 5

2
y y and y     

Now using the equation (3) we have 

 

2 3 1 9

1 5 3
0

2 2 2

0 0 18 5

x

y

z

   
    
    
    
     

   

  

  

2 3 9

1 5 3

2 2 2

18 5

x y z

y z

z

  

 



 

On solving using backward substitution we have 

 
35 29 5

,
18 18 18

x y and z    

Thus, the solution of the given system of equations is 

 
35 29 5

,
18 18 18

x y and z   . 

4.2. Crout's method: 

 If we take 1iiu  , in the factorization method then the factorization 

method is called the Crout's method. 

For the matrix A where 

 A = LU  (1) 

if 1iil  , then we have 
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12 13 111

23 221 22

31 32 33 3

1 2 3

1 . . .0 0 . . . 0

0 1 . . .0 . . . 0

. . . 0 0 0 1 . . .

. . . . . . . . . . . . . .

. . . 0 0 0 . . . 1

n

n

n

n n n nn

u u ul

u ul l

L l l l and U u

l l l l

  
  
  
   
  
  
  

   

  

thus, for the system of equations 

 AX = b  (2) 

We have 

 LUX = b  (3) 

Putting UX = y in equation (3), we have 

 Ly = b  (4) 

On solving equation (4) by forward substitution, we find the vector y now solve 

the system of equations 

 UX = b 

by backward substitution we get the values 

 1 2, , . . ., nx x x . 

We have 

 UX = y 

and Ly = b 

   1 1y L b and x U y     

Thus the inverse of A can also be determined as 

 
1 1 1A U L   . 

Example 4: Solve the system of equations  

 

1

4 3 6

3 5 3 4

x y z

x y z

x y z

  

  

  

  

using factorization method (Crout's method). 

Solution (Crout's method): We have system of equations 

 AX = b  (1) 
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where 

 

1 1 1 1

4 3 1 , 6

3 5 3 4

x

A X y and b

z

     
     

   
     
          

 

Now let 

 A = L U   (2) 

where 

 

12 1311

21 22 23

31 32 33

10 0

0 0 1

0 0 1

u ul

L l l and U u

l l l

  
  

 
  
     

  

Thus from equation (2) we have 

 L U = A  

   

12 1311

21 22 23

31 32 33

10 0 1 1 1

0 0 1 4 3 1

3 5 30 0 1

u ul

l l u

l l l

    
    

 
    
        

 

  

11 21 31

11 12 12 11 13 13

21 12 22 22 21 13 22 23 23

31 12 32 32 31 13 32 23 33 33

1, 4, 3

1 1 1 1

3 1 1 5

5 2 3 10

l l l

l u u and l u u

l u l l and l u l u u

l u l l and l u l u l l

  

     

         

         

  

Thus, we have 

 

1 0 0 1 1 1

4 1 0 0 1 5

3 2 10 0 0 1

L and U

   
   

  
   
      

 

Now using equation (1) and (2) we have 

 LUX = b 

Let 

 UX=Y  (3) 

where 

1

2

3

y

Y y

y

 
 


 
  
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  LY = b 

   

1

2

3

1 0 0 1

4 1 0 6

3 2 10 4

y

y

y

    
    

 
    
        

 

  

1

1 2

1 2 3

1

4 6

3 2 10 4

y

y y

y y y



 

  

 

On solving using forward substitution we have 

 1 2 3

1
1, 2

2
y y and y       

Now using the equation (3) we have 

 

1 1 1 1

0 1 5 2

0 0 1 1

2

x

y

z

 
    
    

     
         
 

  

  

1

5 2

1

2

x y z

y z

z

  

  

 

 

On solving using backward substitution we have 

 
1 1

1,
2 2

x y and z     

Thus, the solution of the given system of equations is 

 
1 1

1,
2 2

x y and z    . 

4.3. Cholesky Method: 

This method is also known as the square root method. If the coefficient matrix A 

is symmetric and positive definite, then the matrix A can be decomposed as 

 TA LL   

where , 0ij ijL if i j      
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Thus, the system of equations 

 AX b    (1) 

becomes 

 
TLL X b   (2) 

Let TL X Y , then (2) becomes 

 LY b   (3) 

Now system of equations in (3) can be solved by forward substitution and 

solution vector X is determined from 

 TL X Y  (4) 

by the backward substitutions. 

The inverse of coefficient matrix A can also be obtained from 

 1 1 1 1 1 1( ) ( ) ( )T T TA LL L L L L        . 

Value Addition: Note 

1. The matrix A can also be decomposed as 

 
TA UU   

Where , 0ij ijU u u if i j   . 

2. If the coefficient matrix A is symmetric but not positive definite, then the 

Cholesky's method could still be applied, but then leads to a complex matrix L, 
so that it becomes impractical. 

Example 5: Solve the system of equations  

 

2 3 5

2 8 22 6

3 22 82 10

x y z

x y z

x y z

  

  

   

  

using Cholesky method. 

Solution: Given system of equations is 

 AX = b  (1) 

where 

 

1 2 3 5

2 8 22 , 6

3 22 82 10

x

A X y and b

z

     
     

  
     
          

 

Now let 
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 TA LL     (2) 

where 

 

11

21 22

31 32 33

0 0

0

l

L l l

l l l

 
 


 
  

  

Thus from equation (2) we have 

   

11 21 3111

21 22 22 32

31 32 33 33

0 0 1 2 3

0 0 2 8 22

3 22 820 0

l l ll

l l l l

l l l l

    
    


    
        

 

  

2

11 11

11 21 21

11 31 31

2 2

21 22 22

31 21 32 22 32

2 2 2

31 32 33 33

1 1,

2 2,

3 3,

8 2,

22 8,

82 3.

l l

l l l

l l l

l l l

l l l l l

l l l l

  

  

  

   

   

    

  

Thus, we have 

 

1 0 0

2 2 0

3 8 3

L

 
 


 
  

 

Now using equation (1) and (2) we have 

 
TLL X b  

Let 

 TL X Y  (3) 

where 

1

2

3

y

Y y

y

 
 


 
  

 

  LY b  

   

1

2

3

1 0 0 5

2 2 0 6

3 8 3 10

y

y

y

    
    


    
        
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  

1

1 2

1 2 3

5

2 2 6

3 8 3 10

y

y y

y y y



 

   

 

On solving using forward substitution we have 

 1 2 35, 2 3y y and y       

Now using the equation (3) we have 

 

1 2 3 5

0 2 8 2

0 0 3 3

x

y

z

     
     

 
     
          

  

  

2 3 5

2 8 2

3 3

x y z

y z

z

  

  

 

 

On solving using backward substitution we have 

 2, 3 1x y and z     

Thus, the solution of the given system of equations is 

 2, 3 1x y and z    . 

Example 6: Solve the system of equations  

 

4 2 14 14

2 17 5 101

14 5 83 155

x y z

x y z

x y z

  

   

  

  

using Cholesky method. 

Solution: Given system of equations is 

 AX = b  (1) 

where 

 

4 2 14 14

2 17 5 , 101

14 5 83 155

x

A X y and b

z

     
     

    
     
          

 

Now let 

 TA LL     (2) 
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where 

 

11

21 22

31 32 33

0 0

0

l

L l l

l l l

 
 


 
  

  

Thus from equation (2) we have 

   

11 21 3111

21 22 22 32

31 32 33 33

0 0 4 2 14

0 0 2 17 5

14 5 830 0

l l ll

l l l l

l l l l

    
    

 
    
        

 

  

2

11 11

11 21 21

11 31 31

2 2

21 22 22

31 21 32 22 32

2 2 2

31 32 33 33

4 2,

2 1,

14 7,

17 4,

5 3,

83 5.

l l

l l l

l l l

l l l

l l l l l

l l l l

  

  

  

   

     

    

  

Thus, we have 

 

2 0 0

1 4 0

7 3 5

L

 
 


 
  

 

Now using equation (1) and (2) we have 

 
TLL X b  

Let 

 TL X Y  (3) 

where 

1

2

3

y

Y y

y

 
 


 
  

 

  LY b  

   

1

2

3

2 0 0 14

1 4 0 101

7 3 5 155

y

y

y

    
    

 
    
        
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  

1

1 2

1 2 3

2 14

4 101

7 3 5 155

y

y y

y y y



  

  

 

On solving using forward substitution we have 

 1 2 37, 27 5y y and y      

Now using the equation (3) we have 

 

2 1 7 7

0 4 3 27

0 0 5 5

x

y

z

     
     

  
     
          

  

  

2 7 7

4 3 27

5 5

x y z

y z

z

  

  



 

On solving using backward substitution we have 

 3, 6 1x y and z     

Thus, the solution of the given system of equations is 

 3, 6 1x y and z    . 

Theorem 1: (Stability of the Cholesky Factorization): The Cholesky TLL -

factorization is numerically stable. 

Proof: For the Cholesky method, we know that 

 TA LL    (1) 

where , 0ij ijL if i j     

Thus, 

 2 2 2

1 2 . . .jj j j jja           [using equation (1)]               (2) 

Hence for all 2

jk  ( 0jk for k j  ). We obtain 

 2 2 2 2

1 2 . . .jk j j jj jja         

Thus, 2

jk  is bounded by an entry of A, which means stability against round-off. 
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5. Positive Definite Matrix: 

A matrix A  is said to be positive definite matrix, if 
* 0X AX   for any vector 

0X   and * ( )TX X . Further, 
* 0X AX   if and only if X = 0. 

Value Addition: Note 

If a matrix A is Hermitian, strictly diagonal dominant matrix with positive real 

diagonal entries, then A is positive definite. 

 

5.1. Properties of Positive Definite Matrices: 

A positive definite matrix has the following properties: 

(I) If A is non-singular and positive definite matrix then *B A A  is Hermitian 

and positive definite. 

(II) The eigenvalues of a positive definite matrix are all positive. 

(III) All the leading minors of A are positive. 

 

 

Value Addition: Note 

1. A real matrix B is said to have 'property A' iff there exists a permutation 

matrix P such that 
11 12

21 22

T
A A

PBP
A A

 
  
 

, where 11 22A and A  are diagonal matrices. 

2. Inverse of a symmetric matrix is a symmetric matrix. 

3. Inverse of a upper triangular matrix is a upper triangular matrix. 
4. Inverse of a lower triangular matrix is a lower triangular matrix. 

 

6. Pivoting: 

 In the Gauss elimination process, sometimes it may happen that any one of the 

pivot element 11 22 33, ' , ' , . . ., 'nna a a a  vanishes or becomes very small compared to 

other elements in that column, then we attempt to rearrange the remaining rows 

so as to obtain a non-vanishing pivot or to avoid the multiplication by a large 

number. This process is called pivoting. 

There are two types of the pivoting 

6.1. Partial Pivoting: Partial pivoting is done in the following steps: 

Step 1: In the first stage of elimantion, we searched the first column for the 

largest element in magnitude and brought as the first pivot by interchanging the 

first equation with equation having the largest element in magnitude.  
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Step 2: In the second stage we searched the second column for the largest 

element in magnitude among the (n-1) elements leaving the first element and 

brought this element as the second pivot by interchanging the second equation 

with the equation having the largest element in magnitude. 

This procedure is continued until we got the upper triangular matrix. In the 

partial pivoting, pivot is found by the algorithm choose j, the smallest integer for 

which 

 ( ) ( )max ;k k

jk ika a k i n     

and interchange rows k and j. 

6.2. Complete Pivoting: 

In the complete pivoting search the matrix A for the largest element in 

magnitude and bring it as the first pivot. In complete pivoting not only an 

interchange of equations requires but also an interchange of position of the 

variables requires. 

In complete pivoting following algorithm is used to find the pivot choose l and m 

as the smallest integers for which  

 ( ) ( )max , ,k k

lm ija a k i j n     

and interchange rows k and l and columns k and m. 

Value Addition: Note 

If the matrix A is diagonally dominant or real, symmetric and positive definite 

then no pivoting is necessary. 

 

7. Gauss Elimination Method: 

From the previous methods, we have learnt that any system of linear algebraic 

equations can be solved by the use of determinants. But the method of solving 

the system of linear equations by determinants is not very practical, even with 

efficient methods for evaluating the determinants. Because if the order of the 

determinant is large, then the evaluation becomes tedious. Therefore to avoid 

these unnecessary computations, mathematicians have tried to develop simpler 

and less time consuming procedures and various methods for solving system of 

linear equations have been suggested. Gauss elimination method is one of the 

most important method to solve the system of linear equations . 

 Gauss elimination method for solving linear systems is a systematic 

process of elimination that reduces the system of linear equations to triangular 

form. In Gauss elimination method, we proceed with the following steps. 
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Step 1: Elimination of x1 from the second, third, . . . , nth equations 

 In the first step of Gauss elimination method we eliminate x1 from the 

second, third, . . . , nth equations by subtracting suitable multiple of first 

equation from second, third, . . . , nth equations. 

 The first equation is called the pivot equation and the coefficient of x1 in 

the first equation i.e., 11 0a   is called the pivot. Thus first step gives the new 

system as  follows. 

 

11 1 12 2 1 1

22 2 2 2

2 2

. . .

' . . . ' '

. . . . .

' . . . ' '

n n

n n

n nn n n

a x a x a x b

a x a x b

a x a x b

   

  

  

  

Step 2: Elimination of x2 from the third, . . . , nth equation 

 In the second step of Gauss elimination method, we take the new second 

equation (which no longer contains x1) as the pivot equation and use it to 

eliminate x2 from the third, fourth, . . . , nth equation. 

 In the third step we eliminate x3 and in the fourth step we eliminate x4 

and so on. After (n-1) steps when the elimination is complete this process gives 

upper triangular system of the form 

 

11 1 12 2 1 1

22 2 2 2

. . .

. . .

. . . . .

n n

n n

nn n n

c x c x c x d

c x c x d

c x d

   

  



  

Thus, the new system of equations is of upper triangular form that can be solved 

by the back substitution. 

Value Addition: Note 

In the Gauss elimination method the pivot equation remains unchanged also we 
may make the pivot as 1 before elimination at each step. 

 

Example 7: Solve the system of equations  

 

2 3

1 2 3

1 2 3

8 2 7

3 5 2 8

6 2 8 26

x x

x x x

x x x

  

  

  

  

using Gauss elimination method. 
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Solution: Given system of equations is 

 2 38 2 7x x     (1) 

 1 2 33 5 2 8x x x     (2) 

 
1 2 36 2 8 26x x x     (3) 

Since the coefficient of x1 in first equation is zero therefore we must rearrange 

the equations by interchanging first equation to third i.e., 

 1 2 36 2 8 26x x x     (4) 

 1 2 33 5 2 8x x x     (5) 

 2 38 2 7x x     (6) 

Step 1: Elimination of x1: 

On subtracting 
1

2
 times of equation (4) from equation (5) we have 

 1 2 36 2 8 26x x x     (7) 

 2 34 2 5x x     (8) 

 2 38 2 7x x     (9) 

Step 2: Elimination of x2: 

On subtracting 2 times of equation (8) from equation (9) we have 

 1 2 36 2 8 26x x x     (10) 

 2 34 2 5x x     (11) 

 36 3x    (12) 

On solving equation (10), (11) and (12) by back substitution we have 

 3 2 1

1
, 1 4

2
x x and x     . 

Thus, the required solution is  

 1 2 3

1
4, 1

2
x x and x    . 
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Example 8: Solve the system of equations  

 

1 2 3

1 2 3

1 2 3

1 1
1

2 3

1 1 1
0

2 3 4

1 1 1
0

3 4 5

x x x

x x x

x x x

  

  

  

  

using Gauss elimination method. 

Solution: Given system of equations is 

 1 2 3

1 1
1

2 3
x x x     (1) 

 1 2 3

1 1 1
0

2 3 4
x x x     (2) 

 1 2 3

1 1 1
0

3 4 5
x x x    (3) 

Step 1: Elimination of x1: 

On subtracting 
1

2
 times of equation (1) from equation (2) and  

1

3
 times of 

equation (1) from equation (3) we have 

 1 2 3

1 1
1

2 3
x x x     (4) 

 2 3

1 1 1

12 12 2
x x     (5) 

 2 3

1 4 1

12 45 3
x x    (6) 

Step 2: Elimination of x2: 

On subtracting equation (5) from equation (6) we have 

 1 2 3

1 1
1

2 3
x x x     (7) 

 2 3

1 1 1

12 12 2
x x     (8) 

 3

1 1

180 6
x    (9) 
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On solving equation (7), (8) and (9) by back substitution we have 

 3 2 130, 36 9x x and x    . 

Thus, the required solution is  

 1 2 39, 36 30x x and x    . 

Example 9: Solve the system of equations  

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

10 7 3 5 6

6 8 4 5

3 4 11 2

5 9 2 4 7

x x x x

x x x x

x x x x

x x x x

   

    

   

   

  

using Gauss elimination method. 

Solution: Given system of equations can be written as 

 1 2 3 40.7 0.3 0.5 0.6x x x x      (1) 

 1 2 3 46 8 4 5x x x x       (2) 

 1 2 3 43 4 11 2x x x x     (3) 

 1 2 3 45 9 2 4 7x x x x      (4) 

Step 1: Elimination of x1: 

On subtracting ( 6 ) times of equation (1) from equation (2),  3 times of 

equation (1) from equation (3) and 5 times of equation (1) from eqution (4) we 

have 

 1 2 3 40.7 0.3 0.5 0.6x x x x      (5) 

 2 3 43.8 0.8 8.6x x x     (6) 

 2 3 43.1 3.1 9.5 0.2x x x    (7) 

 2 3 45.5 3.5 1.5 4x x x      (8) 

Step 2: Elimination of x2: 

In the above equations (6), (7) and (8) coefficient of x2 is maximum 

(numerically) in equation (8) therefore interchanging the equation (6) and (8) 

After that x2 is eliminated from equations (7) and (8) we have 

 1 2 3 40.7 0.3 0.5 0.6x x x x      (9) 
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 2 3 40.6363 0.27275 0.72727x x x      (10) 

 3 41.61818 0.03636 11.36364x x    (11) 

 3 41.12727 10.34545 2.45455x x    (12) 

Step 3: Elimination of x3: 

On eliminating x3 from equation (12) we have 

 1 2 3 40.7 0.3 0.5 0.6x x x x      (13) 

 2 3 40.6363 0.27275 0.72727x x x      (14) 

 3 40.02247 7.02247x x    (15) 

 410.3607947 10.37079x    (16) 

On solving equation (13), (14), (15) and (16) by back substitution we have 

 4 3 2 11, 7, 4 5x x x and x     . 

Thus, the required solution is  

 1 2 3 45, 4, 7 1x x x and x     . 

Example 10: Solve the system of equations  

 

1 2 3

1 2 3

1 2 3

10 2 4

10 3

2 3 20 7

x x x

x x x

x x x

  

  

  

  

using Gauss elimination method. 

Solution: Since the given system is diagonally dominant therefore no pivoting is 

necessary. Thus we have 

 1 2 310 2 4x x x     (1) 

 1 2 310 3x x x     (2) 

 1 2 32 3 20 7x x x    (3) 

Step 1: Elimination of x1: 

On eliminating x1 from equations (2) and (3) we have 

 1 2 310 2 4x x x     (4) 
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 2 3

101 12 26

10 10 10
x x    (5) 

 2 3

32 196 62

10 10 10
x x    (6) 

Step 2: Elimination of x2: 

On eliminating x2 from equation (6) we have 

 1 2 310 2 4x x x     (7) 

 2 3

101 12 26

10 10 10
x x    (8) 

 3

20180 5430

1010 1010
x    (9) 

On solving equation (7), (8) and (9) by back substitution we have 

 3 2 10.269, 0.289 0.375x x and x   . 

Thus, the required solution is  

 1 2 30.375, 0.289 0.269x x and x   . 

8. Gauss-Jordan Elimination Method:  

M. Jordan in 1920 introduced another variant of the Gauss elimination method. 

In Gauss-Jordan method the coefficient matrix is reduced to a diagonal form 

rather than a triangular form in the Gauss elimination and we have the solution 

without further computations. Generally, this method is not used for the solution 

of a system of equations, because the reduction from the Gauss triangular to 

diagonal form requires more operations than back substitution does. Therefore 

this method is disadvantageous for solving system of equations. However it 

gives a simple method for finding the inverse of a given matrix by operating on 

the unit matrix I in the same way as the Gauss-Jordan method reducing A to I. 

Example 11: Solve the system of equations  

 

1 2 3

1 2 3

1 2 3

2 8

2 3 4 20

4 3 2 16

x x x

x x x

x x x

  

  

  

  

using Gauss elimination method. 

Solution: Given system of equations is 

 1 2 32 8x x x     (1) 
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 1 2 32 3 4 20x x x     (2) 

 1 2 34 3 2 16x x x    (3) 

Step 1: Elimination of x1: 

On eliminating x1 from equations (2) and (3) we have 

 1 2 32 8x x x     (4) 

 2 32 4x x     (5) 

 2 35 2 16x x     (6) 

Step 2: Elimination of x2: 

On eliminating x2 from equations (4) and (6) we have 

 1 2 30. 5 16x x x     (7) 

 2 32 36x x      (8) 

 312 36x    (9) 

Step 2: Elimination of x3: 

On eliminating x3 from equations (7) and (8) we have 

 1 1x     (7) 

 2 2x     (8) 

 312 36x   (9) 

This gives  

 1 2 31, 2 3x x and x   . 

Example 12: Find the inverse of the coefficient matrix of the given system of 

equations  

 

1 2 3

1 2 3

1 2 3

1

4 3 1 6

3 5 3 4

x x x

x x x

x x x

  

  

  

  

using Gauss elimination method with partial pivoting and hence solve the system 

of the equations.. 
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Solution: Given system of equations is 

 AX b   (1) 

where 

 

1

2

3

1 1 1 1

4 3 1 , 6

3 5 3 4

x

A X x and b

x

    
    

   
    
        

 

Using the augmented matrix [A | I], we have 

 

1 1 1 1 0 0

[ | ] 4 3 1 0 1 0

3 5 3 0 0 1

A I

 
 

  
 
 

  

 

4 3 1 0 1 0

1 1 1 1 0 0

3 5 3 0 0 1

  
 

  
 
 

  [ 1 2R R  ] 

 

3 1 1
1 0 0

4 4 4

1 1 1 1 0 0

3 5 3 0 0 1

 
 

 
  
 
 
 

 1 1

1

4
R R  

 

3 1 1
1 0 0

4 4 4

1 5 1
0 1 0

4 4 4

11 15 3
0 0 1

4 4 4

 
 

 
  
 
 
 
  

 
2 2 1

3 3 13

R R R

R R R

 

 
 

 

3 1 1
1 0 0

4 4 4

11 15 3
0 0 1

4 4 4

1 5 1
0 1 0

4 4 4

 
 

 
  
 
 
 
  

 2 3R R  
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3 1 1
1 0 0

4 4 4

15 3 4
0 1 0

11 11 11

1 5 1
0 1 0

4 4 4

 
 

 
  
 
 
 
  

 2 2

4

11
R R  

 

14 5 3
1 0 0

11 11 11

15 3 4
0 1 0

11 11 11

10 2 1
0 0 1

11 11 11

 
  

 
  
 
 
  
  

 
1 1 2

3 3 2

3

4

1

4

R R R

R R R

 

 

 

 

14 5 3
1 0 0

11 11 11

15 3 4
0 1 0

11 11 11

0 0 1 11 1 1

10 5 10

 
  

 
  
 
 
  
  

 3 3

11

10
R R  

 

7 1 2

5 5 51 0 0
3 1

0 1 0 0
2 2

0 0 1
11 1 1

10 5 10

 
 

 
  
 
 
  
  

 
1 1 3

2 2 3

14

11

15

11

R R R

R R R

 

 

 

Thus the inverse of the coefficient matrix A is 

 
1

7 1 2

5 5 5

3 1
0

2 2

11 1 1

10 5 10

A

 
 

 
  
 
 
  
  

  

 Therefore the solution of the system of equation (1) is 

 
1X A b   
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   

7 1 2

15 5 5 1
3 1 1

0 6
2 2 2

4
11 1 1 1

10 5 10 2

X

      
    
      
    
     

     
    

 

Thus,  

 1 2 3

1 1
1,

2 2
x x and x    . 

9. Error Analysis for Direct Methods:  

The quality of a numerical method is judged in terms of: 

 Amount of storage  

 Amount of time (   Number of operations)  

 Effect of round-off error. 

9.1. Operational Count for Gauss Elimination: 

 The number of divisions and multiplications involved in solving the system 

of equations is usually called the operational count for that method. For Gauss 

elimination, the operation count for a system of equations is as follows: 

Elimination of x1: For eliminating x1, the factor 21

11

a

a
 is computed once. There 

are (n-1) multiplications in the (n-1) terms on the left side and 1 multiplication 

on the right side.  

Hence the number of multiplications/divisions required for eliminating x1 is  

 (1 1 1 1)n n     , 

Since x1 is eliminated from (n-1) equations. Therefore, the total number of 

multiplications/divisions required to eliminated x1 from (n-1) equations is  

 ( 1)( 1) ( 1)(n 2 1)n n n      , 

Elimination of x2: For eliminating x2, the total number of 

multiplications/divisions required to eliminate x2 from (n-2) equations is 

 ( 2) ( 2)(n 2 2)n n n     , 

Elimination of x3: For eliminating x3, the total number of 

multiplications/divisions required to eliminate x3 from (n-3) equations is 
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 ( 3)( 1) ( 3)(n 2 3)n n n      , 

 Elimination of xk: For eliminating xk, the total number of 

multiplications/divisions required to eliminate xk from (n-k) equations is 

 ( )(n 2 )n k k    , 

Elimination of x(n-1): For eliminating x(n-1), the total number of 

multiplications/divisions required to eliminate x(n-1) from (n-k) equations is 

   n ( 1) n 2 ( 1) 1.3n n       . 

Thus, the total number of operations required to eliminate x1, x2, x3, . . ., xn-1  

are as follows 

 

1 1
2

1 1

1
2 2

1

2

( )( 2 ) ( ) ( )

2 2 2

( 1) n(2n 2 1)
( 1)

6

( 1) n ( 1) n
2 2 ( 1) 2

2 2

n n

k k

n

k

n k n k n k n k

n k nk n k

n
n n

n n
n n n

 

 





        

      

  
   

 
  

 


  

   

31

1

( )( 2 )
3

n

k

n
n k n k





     

Thus, the total number of multiplications and divisions required in Gaussian 

elimination method is 
3

3

n
.  

Note 1: Similarly, it can be shown that the Gauss-Jordan Method requires 
3

2

n
 

arithmetic operations. Hence, Gauss elimination method is preferred to Gauss-

Jordan method to solve the large system of equations. 

Note 2: In L-U decompositions method total number of operations count is 
3

3

n
 

same as in Gauss elimination method. 

Note 3: In Cholesky method total number of operations count is 
3

6

n
. 

Exercise: 

1. Solve the following system of equations using LU-factorization method: 
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(I) 
4 5 7

12 14 18

x y

x y

 

 
  

 

(II) 

5 9 2 24

9 4 25

2 11

x y z

x y z

x y z

  

  

  

  

 

(III) 

4 6 8 0

6 34 52 160

8 52 129 452

x y z

x y z

x y z

  

   

   

  

 

2. Solve the following system of equations using Cholesky method 

(I) 

4 1

4 0

4 0

x y

x y z

y z

  

   

  

  

 

(II) 

1 2

1 2 3

2 3 4

3 4

4 1

4 0

4 0

4 0

x x

x x x

x x x

x x

 

   

   

  

  

3. Solve the following system of equations using Gauss elimination method 

(I)  

2 2 3 1

4 2 3 2

3

x y z

x y z

x y z

  

  

  

  

 

(II) 

1 2 3 4

1 3 4

1 2 3

1 2 3

2 2 2

4 2 3

3 2 2 1

3 2 4

x x x x

x x x

x x x

x x x

   

  

   

   

 

  

(III) 

1 2 3

1 2 3

1 2 3

4 4

4 2 4

3 2 4 6

x x x

x x x

x x x

  

  

  

 

 

(IV) 

1 2 3

1 2 3

1 2 3

2

2 3 5 3

3 2 3 6

x x x

x x x

x x x

  

   

  
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4. Solve the following system of equations using Gauss-Jordan method: 

(I) 

2 3 1

4 5 7

3 2 4 3

x y z

x y z

x y z

  

   

    

  

 

(II) 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

2 4 4

4 3 5 2 1

1

3 3 2 1

x x x x

x x x x

x x x x

x x x x

   

     

    

    

  

 

(III) 

1 2 3

1 2 3 4

1 2 3 4

2 3 4

4 2 4 10

2 2 3 2 18

4 2 6 3 30

2 3 9 61

x x x

x x x x

x x x x

x x x

  

   

   

  

 

 

(IV) 

1 2 3

1 2 3

1 2 3

10 2 59

8 2 4

7 20 5

x x x

x x x

x x x

  

   

  

. 

Summary: 

In this lesson we have emphasized on the followings 

 Direct methods to solve the system of linear equations 

 Inverse of the matrix method 

 Cramer's Rule 

 Method of Factorization (Triangularization Method) 

 Doolittle's method 

 Crout's method 

 Cholesky Method 

 Positive Definite Matrix 

 Gauss Elimination Method 

 Pivoting 

 Gauss-Jordan Elimination Method 

 Error Analysis for Direct Methods 

 Operational Count for Gauss Elimination 
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