Discipline Course-I Semester -I Paper: Mathematical PhysicsI IA Lesson: Second Order Linear Homogeneous Differential Equation (Continued) Lesson Developer: Savinder Kaur College/Department: SGTB Khalsa College, University of Delhi

Table of Contents

Chapter 7: Second Order Linear Homogeneous Differential Equation

- Introduction
- 7.1 The Wronskian
- 7.2 Theorem of Linear Independence
- 7.3 Fundamental Theorems
 - 7.3.1 The Theorem
 - 7.3.2 Theorem of Existence
 - 7.3.2 Theorem of Uniqueness
- Summary
- Exercise / Practice
- Glossary
- References/ Bibliography/ Further Reading

Learning Objectives

In this chapter the student will understand

- what is the Wronskian, a basis and how to check for linear independence and dependence of solutions of Second Order DE?
- Indamental Theorems on solutions of Second Order DE with constant coefficients.
- Theorem of Existence of at least one solution for an initial value Second Order DE with constant coefficients.
- Theorem of Uniqueness of at most one solution for an initial value Second Order DE with constant coefficients.

Second Order Linear Homogeneous DE (continued)

7.1 The Wronskian

Consider the general second order linear homogeneous differential equation in y(x) in the Normal Form or Standard Form

$$y'' + p(x)y' + q(x)y = 0$$

where p(x) and q(x) are either constants or functions of x alone. By now we would have noticed that the solution to the above equation is made up of a Basis $y_1(x) \& y_2(x)$ which are linearly independent solutions to the DE.

Now let's recall that $y_1(x) \& y_2(x)$ will be *linearly independent* on an interval I if and only if

$$C_1 y_1(x) + C_2 y_2(x) = 0$$

on *I* implies that $C_1 = 0$ & $C_2 = 0$. Further, recall that $y_1(x) \& y_2(x)$ will be *linearly* dependent solutions on the interval I if we can express

$$y_1(x) = ay_2(x) \text{ or } y_2(x) = by_1(x)$$

i.e., when $y_1 \otimes y_2$ are proportional.

A solution of the second order (linear or nonlinear) DE on some open interval a < x < b is function $y_{pi}(x)$ that has defined derivatives $y_{pi}'(x)$ and $y_{pi}''(x)$ and satisfies that DE for all x in that interval. In other words the DE becomes an identity if we replace the unknown function y(x) & its derivatives by $y_{pi}(x)$ and its derivatives $y_{pi}'(x) \& y_{pi}''(x)$. To understand the linear independence of the solutions we would like to now introduce an important quantity called, the Wronskian, W. For the two solutions above W is defined as

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

7.2 Theorem

If the Second Order Linear Homogeneous DE

$$y'' + p(x)y' + q(x)y = 0$$
 (1)

Has continuous coefficients p(x) & q(x) on an open interval *I*, then the two solutions $y_1(x) \& y_2(x)$ are Linearly Dependent on the open interval *I*;

- (i) If and only if their Wronskian W is zero at some x₀ on I
- (ii) If the Wronskian W = 0 for $x = x_0$ then W = 0 at every x on I
- (iii) If and only if their Wronskian W is non-zero at some x_0 on I then the two solutions $y_1(x) \otimes y_2(x)$ are Linearly Independent on the open interval I

Proof

(i) If and only if their Wronskian W is zero at some x_0 on I

If we consider $y_1(x) \& y_2(x)$ as two linearly dependent solutions of the *Homogeneous* DE on an interval *I* such that

$$y_1(x) = k y_2(x) \quad \forall x \in I$$

Their Wronskian will be

$$W(y_1, y_2) = W(ky_2, y_2) = \begin{vmatrix} ky_2 & y_2 \\ ky_2' & y_2' \end{vmatrix} = ky_2 \times y_2' - ky_2' \times y_2 = 0$$

for all $x \in I$. Therefore it is true for $x = x_0$.

Only if : Conversely, assume that for some $x = x_0$ on *I*, the Wronskian $W(y_1, y_2)_{x=x_0} = 0$ i.e.,

$$\begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} = 0$$

Now for some non-zero values of $C_1 \& C_2$ we can write

$$\begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = 0$$

The reason for writing the above equation is the belief that the solutions $y_1(x) \& y_2(x)$ will finally come out to be as two linearly dependent solutions of the *Homogeneous* DE on an interval *I*. So we can write at $x = x_0$

and

$$C_1 y_1(x_0) + C_2 y_2(x_0) = 0$$

$$C_1 y_1'(x_0) + C_2 y_2'(x_0) = 0$$

Using these non-zero values of $C_1 \& C_2$ we define a function

$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$

Since $y_1(x) \& y_2(x)$ are solutions by **Fundamental Theorem of Superposition**, a linear **combination of the two solutions must also be a solution**. Therefore, y(x) is a solution with the property that at x_0

$$y(x_0) = 0$$
$$y'(x_0) = 0$$

However, we note that there is another function $Y(x) = 0 \quad \forall x \in I$ (*the trivial solution*) which is a solution to the DE with the same property that

$$Y(x_0) = 0$$
$$Y'(x_0) = 0$$

Lastly, from the **Uniqueness Theorem** (discussed later in the chapter) a *particular* curve must pass through x_0 , satisfying the above initial conditions (for both Y(x) and y(x))

at x_0). Thus Y(x) must be equal to y(x) as two different curves cannot pass through the same point and have the same slope at that point without being identical. So

$$y(x) = Y(x) = 0$$

$$C_1 y_1(x) + C_2 y_2(x) = 0$$

$$y_1(x) \propto y_2(x)$$

i.e. y_1 and y_2 are linearly dependent solutions. This theorem represents the Principle of Superposition and, should be noted, does not hold for *Non-Homogeneous / Non-Linear* DE.

(ii) If the Wronskian W = 0 for $x = x_0$ then W = 0 at every x on IIf $y_1(x) \& y_2(x)$ are two solutions of the second order Homogeneous DE (1) on an interval I containing a point x_0 then it follows

> $y_1''(x) = -p(x)y_1'(x) - q(x)y_1(x)$ $y_2''(x) = -p(x)y_2'(x) - q(x)y_2(x)$

Their Wronskian will be

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 \times y_2' - y_1' \times y_2'$$

for all $x \in I$. And its derivative would be

$$W'(y_1, y_2) = y'_1 \times y'_2 + y_1 \times y''_2 - y''_1 \times y_2 - y'_1 \times y'_2$$

$$W'(y_1, y_2) = y_1 \times y''_2 - y''_1 \times y_2$$

$$W'(y_1, y_2) = y_1 \times \{-py_2' - qy_2\} - \{-py_1' - qy_1\} \times y_2$$

$$W'(y_1, y_2) = -py_2'y_1 - qy_2y_1 + py_1'y_2 + qy_1y_2$$

$$W'(y_1, y_2) = py_1'y_2 - py_2'y_1$$

$$W'(y_1, y_2) = p(y_1'y_2 - y_2'y_1)$$

$$W'(y_1, y_2) = -pW(y_1, y_2)$$

$$W'(y_1, y_2) + pW(y_1, y_2) = 0$$

This is a first order linear DE which can be solved by separation of variable

$$\ln|W(x)| = -\int^{x} p(\xi)d\xi$$
$$W(x) = e^{-\int^{x} p(\xi)d\xi}$$

It would be true that at $x = x_0$

$$W(x_0) = e^{-\int^{x_0} p(\xi) d\xi}$$

Thus,

$$\frac{W(x)}{W(x_0)} = \frac{e^{-\int^x p(\xi)d\xi}}{e^{-\int^{x_0} p(\xi)d\xi}} = e^{-\int^x p(\xi)d\xi + \int^{x_0} p(\xi)d\xi} = e^{-\int^x_{x_0} p(\xi)d\xi}$$

$$W(x) = W(x_0)e^{-\int_{x_0}^x p(\xi)d\xi}$$

Since $p(\xi)$ is continuous on the interval *I*, thus the RHS is finite quantity so if $W(x_0) = 0$ on I then W(x) = 0 at every *x* on *I*.

(iii) **If and only if** their Wronskian W is non-zero at some x_0 on I then the two solutions $y_1(x) \& y_2(x)$ are Linearly Independent on the open interval I

Let $y_1(x) \& y_2(x)$ be two linearly independent solutions of the *Homogeneous* DE on an interval *I* containing a point x_0 . Also let at the point x_0 the Wronskian of the two solutions $W(y_1, y_2)_{x=x_0} = 0$ so that

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}_{x=x_0} = 0$$

We can find two non-zero constants $C_1 \& C_2$ such that

$$\begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = 0$$

If we define a function

$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$

Then it is obvious that this function would satisfy the initial conditions

and

$$y(x_0) = C_1 y_1(x_0) + C_2 y_2(x_0) = 0$$

$$y'(x_0) = C_1 y_1'(x_0) + C_2 y_2'(x_0) = 0$$

The function y(x) therefore is a solution to the DE satisfying the initial conditions. However, there exists a trivial solution Y(x) = 0 of the DE which satisfies the initial condition

 $Y(x_0)=0$

 $Y'(x_0) = 0$

and

By Uniqueness Theorem we find

$$y(x) = Y(x)$$

$$C_1 y_1(x) + C_2 y_2(x) = 0$$

$$y_1(x) \propto y_2(x)$$

which means that $y_1(x) \& y_2(x)$ are linearly dependent. This however contradicts our initial assumption of $y_1(x) \& y_2(x)$ being linearly independent. Hence, if $y_1(x) \& y_2(x)$ are linearly independent then there is no point $x_0 \in I$ for which the Wronskian is zero $W(y_1, y_2)_{x=x_0} = 0$.

Conversely, let $y_1(x) \& y_2(x)$ be two solutions of the DE such that at some point $x_0 \in I$ the Wronskian is non-zero $W(y_1, y_2)_{x=x_0} \neq 0$ and $C_1 \& C_2$ be two non-zero constants such that

$$C_1 y_1(x) + C_2 y_2(x) = 0 \forall x \in I$$

From the second assumption we can write for some point $x_0 \in I$

and

$$C_1 y_1(x_0) + C_2 y_2(x_0) = 0$$

$$C_1 y_1'(x_0) + C_2 y_2'(x_0) = 0$$

We can write it in matrix form as

$$\begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = 0$$

Since we have assumed that

$$W(y_1, y_2)_{x=x_0} = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} \neq 0$$

it implies that $C_1 \& C_2$ have to be zero. Thus, $y_1(x) \& y_2(x)$ as two linearly dependent solutions of the *Homogeneous* DE on an interval *I* since we cannot find any $C_1 \& C_2$ which are non-zero.

Examples of Wronskian:

Example 7.2.1 Check that the two solutions of the *Linear Homogeneous* DE are independent or not

$$y^{\prime\prime}+k^2y=0$$

Solution:

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing $y'' \rightarrow \lambda^2$, $y' \rightarrow \lambda \otimes y \rightarrow 1$

 $\lambda^2 + k^2 = 0$

The roots are then found as

$$\lambda^{2} = -k^{2}$$
$$\lambda = ik \& \lambda = -ik$$
$$\alpha = 0 \& \beta = k$$

Step 2 The two solutions would be

 $y_1 = e^{0 \times x} \cos kx = \cos kx$ $y_2 = e^{0 \times x} \sin kx = \sin kx$

Step 3 We now determine the Wronskian

$$W(y_1, y_2) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = \begin{vmatrix} \cos kx & \sin kx \\ -k \sin kx & k \cos kx \end{vmatrix}$$
$$W(y_1, y_2) = k \cos^2 kx + k \sin^2 kx = k(\cos^2 kx + \sin^2 kx)$$
$$W(y_1, y_2) = k$$

and the two solutions $\cos kx \& \sin kx$ will be linearly independent if and only if $k \neq 0$.

Institute of Lifelong Learning, University of Delhi

7.3 Fundamental Theorems

Consider a general Homogeneous Second Order Linear DE

$$L(y) = y'' + a_1 y' + a_0 y = 0$$

From its Characteristics Equation

 $\lambda^2 + a_1 \lambda + a_0 = 0$

we have been seeing that it has two linearly independent solutions $y_1 \& y_2$. We now write it formally as the following theorem:

7.3.1 The Theorem

Suppose that $a_1 \otimes a_0$ are two arbitrary constants and there is an equation of the form

$$L(y) = y'' + a_1 y' + a_0 y = 0$$

If $\lambda_1 \& \lambda_2$ are two distinct roots of the characteristics polynomial

$$p(\lambda) = \lambda^2 + a_1 \lambda + a_0 = 0$$

then the functions $y_1 = e^{\lambda_1 x} \otimes y_2 = e^{\lambda_2 x}$ are the solutions of the equation L(y) = 0. If, however, $\lambda_1 = \lambda_2 = \lambda$ is a repeated root of the polynomial $p(\lambda) = 0$ then the functions $y_1 = e^{\lambda x} \otimes y_2 = xe^{\lambda x}$ are the solutions of the equation L(y) = 0.

Example 7.3.1.1 Find the independent solutions for the *Linear Homogeneous* DE

$$y^{\prime\prime}+9y=0$$

Solution:

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing $y'' \rightarrow \lambda^2$, $y' \rightarrow \lambda \ y \rightarrow 1$

 $\lambda^2 + 9 = 0$

The roots are then found as

$$\lambda^{2} = -9$$
$$\lambda = 3i \& \lambda = -3i$$
$$\alpha = 0 \& \beta = 3$$

Step 2 The two independent solutions would be

 $y_1 = e^{0 \times x} \cos 3x = \cos 3x$ $y_1 = e^{0 \times x} \sin 3x = \sin 3x$

We have also learnt that all general solutions y must be a linear combination of the two independent solutions $y_1 \& y_2$. Now consider a general Homogeneous Second Order Linear DE

$$L(y) = y'' + a_1 y' + a_0 y = 0$$

with some initial or boundary condition on the value of the solution y and its derivative y' at some point x_0 . The general solution would be

$$y = C_1 y_1 + C_2 y_2$$

of which some combination of $C_1 \& C_2$ would satisfy the initial conditions. It's natural to ask whether such solution exists and whether they would be unique?

7.3.2 Theorem of Existence

There exists a solution y of the initial value problem

$$L(y) = y'' + a_1 y' + a_0 y = 0$$

on $-\infty < x < \infty$ for any real x_0 and constants $y(x_0) = \alpha$ and $y'(x_0) = \beta$.

Proof

We know that for an equation L(y) = 0 we can write the characteristic polynomial equation $p(\lambda) = 0$. The roots of the polynomial will then determine the two linearly independent solutions of the DE. We have two ways to write the solution $y_1(x) \& y_2(x)$ corresponding to these roots

(i) If $\lambda_1 \& \lambda_2$ are distinct then $y_1(x) = e^{\lambda_1 x} \& y_2(x) = e^{\lambda_2 x}$

(ii) If
$$\lambda_1 \& \lambda_2$$
 are equal (λ) then $y_1(x) = e^{\lambda x} \& y_2(x) = xe^{\lambda x}$

We shall now show that there exist constants C₁ & C₂ such that

$$y = C_1 y_1 + C_2 y_2$$

satisfies $y(x_0) = \alpha$ and $y'(x_0) = \beta$ where x_0 is some real number and α, β are given constants.

Following these conditions we have at x_0

$$C_1 y_1(x_0) + C_2 y_2(x_0) = \alpha$$

$$C_1 y_1'(x_0) + C_2 y_2'(x_0) = \beta$$

These equations will have non-zero C_1, C_2 if the determinant

$$\Delta = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} \neq 0$$

We check this for the two cases

(i) When the roots are distinct

$$\Delta = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} = y_1(x_0)y_2'(x_0) - y_2(x_0)y_1'(x_0)$$

$$\Delta = e^{\lambda_1 x_0} \times \lambda_2 e^{\lambda_2 x_0} - e^{\lambda_2 x_0} \times \lambda_1 e^{\lambda_1 x_0} = (\lambda_2 - \lambda_1)e^{(\lambda_1 + \lambda_2)x_0}$$

This is not zero as $\lambda_2 \neq \lambda_1$ and $e^{(\lambda_1 + \lambda_2)x_0} \neq 0$. Thus,

 $\Delta \neq 0$

(ii) When the roots are equal

$$\Delta = = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix} = y_1(x_0)y_2'(x_0) - y_2(x_0)y_1'(x_0) \\ \Delta = \left[e^{\lambda x} \times \frac{d}{dx} (xe^{\lambda x}) - (xe^{\lambda x}) \times \frac{d}{dx} (e^{\lambda x}) \right] \end{vmatrix}_{x=x_0}$$

$$\Delta = e^{\lambda x_0} \times \left(e^{\lambda x_0} + x\lambda e^{\lambda x_0} \right) \end{vmatrix}_{x=x_0} - \left(x_0 e^{\lambda x_0} \right) \times \lambda e^{\lambda x_0}$$

$$\Delta = (1 + x_0\lambda - x_0\lambda)e^{2\lambda x_0} = e^{2\lambda x_0}$$

This is also not zero as $e^{2\lambda x_0} \neq 0$. Thus, $\Delta \neq 0$

Since in both the cases the determinants are *non-zero* for any choice of $x_0, \alpha \& \beta$, we will always find some *non-zero* $C_1 \& C_2$. This guarantees existence of a solution

$$y = C_1 y_1 + C_2 y_2$$

From the above theorem, we have come to know that a general Homogeneous Second Order Linear DE

$$L(y) = y'' + a_1 y' + a_0 y = 0$$

with some initial or boundary condition on the value of the solution y and its derivative y' at some point x_0 must have a solution

$$y = C_1 y_1 + C_2 y_2$$

Understanding for Students

If we plot the solution y vs x, then the initial condition $y(x_0) = \alpha$ represents the point on the y - x plane as shown in the figure

We find that the *Existence Theorem* allows *at least one solution* for each of these cases with different initial conditions.

Now the next question could be: will there be two **different curves** passing through the **same point** having **same slope** at that point? The figure below shows such a hypothetical situation (*the blue and the green curves pass through the same point and have the sae same slope at that point*) and the next theorem explicitly tells us that only one curve will pass through the point (x_0, α) with the same initial conditions.

From the uniqueness theorem we see later that only one type of curve can pass the point (x_0, α) with fixed initial conditions.

Example 7.3.2.1 Find the initial value y(0) = 0 & y'(0) = 3 solution for the *Linear Homogeneous* DE

$$y^{\prime\prime}+9y=0$$

Solution:

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing $y'' \rightarrow \lambda^2$, $y' \rightarrow \lambda \ \& \ y \rightarrow 1$

 $\lambda^2 + 9 = 0$

The roots are then found as

 $\lambda^{2} = -9$ $\lambda = 3i \& \lambda = -3i$ $\alpha = 0 \& \beta = 3$

Step 2 The two independent solutions would be

 $y_1 = e^{0 \times x} \cos 3x = \cos 3x$ $y_2 = e^{0 \times x} \sin 3x = \sin 3x$

Step 3 We now write the general solution

$$y(x) = C_1 \cos 3x + C_2 \sin 3x$$

Step 4 Since $y(0) = 0 = C_1 \cos 0 + C_2 \sin 0 = C_1$ and $y'(0) = 3 = -3C_1 \sin 0 + 3C_2 \cos 0 = 3C_2$, we find $C_1 = 0 \& C_2 = 1$. The solution is thus

 $y(x) = \sin 3x \quad \forall x \in I$

Example 7.3.2.2 Find the initial value y(0) = 0 & y'(0) = 1 solution for the *Linear Homogeneous* DE

 $y^{\prime\prime}+9y=0$

Solution: Since the Steps 1, 2 & 3 are same as above, we expect a general solution of the form

$$y(x) = C_1 \cos 3x + C_2 \sin 3x$$

Step 4 Since $y(0) = 0 = C_1 \cos 0 + C_2 \sin 0 = C_1$ and $y'(0) = 1 = -3C_1 \sin 0 + 3C_2 \cos 0 = 3C_2$, we find $C_1 = 0 \& C_2 = 1/3$. The solution is thus

 $y(x) = \frac{1}{3}\sin 3x \quad \forall \ x \in I$

v'(0)=1

sin(3x)

in(3<u>x)/3</u>

(0,y(0)=0)

y'(0)=3

We now answer the question that how many of solutions can be there which satisfies the same initial conditions? That is to say, is the combination of constants C_1 , C_2 unique for a given initial condition?

7.3.3 Theorem of Uniqueness

On any interval I, a linear DE

$$L(y) = y'' + a_1 y' + a_0 y = 0$$

on $-\infty < x < \infty$ with the initial conditions $y = \alpha$ and $y' = \beta$ for any real x_0 has at most one solution

$$\boldsymbol{y} = \boldsymbol{C}_1 \boldsymbol{y}_1 + \boldsymbol{C}_2 \boldsymbol{y}_2$$

Proof Let us suppose that the DE

L(y)=0

has two different solutions $Y_1(x) \& Y_2(x)$ (as linear combination of the *independent solutions* $y_1 \& y_2$)

$$Y_1 = C_1 y_1 + C_2 y_2 Y_2 = C_3 y_1 + C_4 y_2$$

The two different solutions $Y_1 \& Y_2$ satisfy the same initial conditions

 $Y_1(x_0) = \alpha \& Y_1'(x_0) = \beta$ $Y_2(x_0) = \alpha \& Y_2'(x_0) = \beta$

Since they are solutions to the DE, they satisfy

$$L(Y_1) = 0 \& L(Y_2) = 0$$

Let us now define another function $Y(x) = Y_1(x) - Y_2(x)$, we then find that

$$L(Y) = L(Y_1 - Y_2) = L(Y_1) - L(Y_2) = 0 - 0$$

$$L(Y) = 0$$

Therefore the new function Y(x) must also be a solution of the DE. Further if we find the value of the new function and its derivative at the point x_0

$$Y(x_0) = Y_1(x_0) - Y_2(x_0) = \alpha - \alpha = 0$$

$$Y'(x_0) = Y_1'(x_0) - Y_2'(x_0) = \beta - \beta = 0$$

We would like to state here that any solution Y(x) of the DE L(y) = 0 having the initial conditions $Y(x_0) = 0 \& Y'(x_0) = 0$ must be a *trivial solution* of the DE L(y) = 0. Thus, being the trivial solution, Y(x) = 0 for all $x \in I$ and so it's first

derivative Y'(x) = 0.

The above **conclusion** is drawn from the following arguments: For any Y(x) being a solution of the DE $L(y) = 0 \quad \forall x \in I$ containing any point x_0 in the interval *I*, the modulus of the solution & the rate of growth of the DE $L(y) = y'' + a_1y' + a_0y = 0$ can be defined by

 $||Y(x)|| = \sqrt{|Y(x)|^2 + |Y'(x)|^2} \quad \& \quad k = 1 + a_1 + a_0$

and thus for all x in I it can be shown that

 $||Y(x_0)||e^{-k|x-x_0|} \le ||Y(x)|| \le ||Y(x_0)||e^{k|x-x_0|}$

Since $Y(x_0) = 0$ and $Y'(x_0) = 0$ we find $||Y(x_0)|| = \sqrt{|Y(x_0)|^2 + |Y'(x_0)|^2} = 0$ and thus

 $||Y(x_0)||e^{-k|x-x_0|} \le ||Y(x)|| \le ||Y(x_0)||e^{k|x-x_0|} \to 0 \le ||Y(x)|| \le 0$ ||Y(x)|| = 0

This implies that for all values of $x \in I$

 $||Y(x)|| = \sqrt{|Y(x)|^2 + |Y'(x)|^2} = 0$ |Y(x)|² + |Y'(x)|² = 0

which will be satisfied only if we separately have

 $Y(x) = 0 \& Y'(x) \forall x \in I$

This then means that for all $x \in I$

$$Y(x) = Y_1(x) - Y_2(x) = 0 \quad \rightarrow \quad Y_1(x) = Y_2(x)$$

$$Y'(x) = Y_1'(x) - Y_2'(x) = 0 \quad \rightarrow \quad Y_1'(x) = Y_2'(x)$$

Thus, for $Y_1(x) = Y_2(x)$ and we get

$$C_1y_1 + C_2y_2 = C_3y_1 + C_4y_2 \rightarrow (C_1 - C_3)y_1 = (C_4 - C_2)y_2$$

Since, the functions $y_1 \& y_2$ are independent solutions of the DE L(y) = 0, we find $C_1 = C_3 \& C_4 = C_2$ and so

$$Y_1(x) = Y_2(x)$$

Therefore, the assumption that $Y_1(x) \& Y_2(x)$ are two different solutions of the DE L(y) = 0 satisfying **the same initial condition** ($y = \alpha$ and $y' = \beta$ for any real x_0) does not hold and **we conclude that the solution must be Unique**.

Example 7.3.3.1 For the initial conditions $y'(\alpha) = 0 \& y(\alpha) = 0$ find the solution for the *Linear Homogeneous* DE

y'' + 9y = 0

Solution:

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing $y'' \rightarrow \lambda^2$, $y' \rightarrow \lambda \ y \rightarrow 1$

 $\lambda^2 + 9 = 0$

The roots are then found as

$$\lambda^2 = -9$$
$$\lambda = 0 + 3i \& \lambda = 0 - 3i$$

Step 2 The two independent solutions would be

 $y_1 = e^{0 \times x} \cos 3x = \cos 3x$ $y_2 = e^{0 \times x} \sin 3x = \sin 3x$

Step 3 We now write the general solution as a linear combination of the above independent solutions as

 $y(x) = C_1 \cos 3x + C_2 \sin 3x$

Step 4 Using the initial conditions

 $y(\alpha) = 0 = C_1 \cos 3\alpha + C_2 \sin 3\alpha$ $tan(3\alpha) = -C_1/C_2$

and

$$y'(\alpha) = 0 = -3C_1 \sin \alpha + 3C_2 \cos \alpha$$
$$tan(3\alpha) = C_2/C_1$$

 $\frac{C_1}{C_2} = \frac{C_2}{C_1}$

 $C_1^2 + C_2^2 = 0$

we find

or

Which is possible only if $C_1 = 0$ and $C_2 = 0$. The **trivial** solution is thus

 $y(x) = 0 \quad \forall \ x \in I$

Example 7.3.3.2 Find for the initial values $y'(x_0) = 0 \& y(x_0) = 0$ the solution for the *Linear Homogeneous* DE

$$y^{\prime\prime} + \beta y^{\prime} + \alpha y = 0$$

Solution:

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing $y'' \rightarrow \lambda^2$, $y' \rightarrow \lambda \ \& \ y \rightarrow 1$

 $\lambda^2 + \beta \lambda' + \alpha \lambda = 0$

The general solution y written in terms of linearly independent solutions $y_1(x) \& y_2(x)$

(obtained corresponding to values of $\lambda_1 \& \lambda_2$) is

$$y = C_1 y_1(x) + C_2 y_2(x)$$

Step 2 The initial conditions demand

 $y(x_0) = 0 = C_1 y_1(x_0) + C_2 y_2(x_0)$ $y'(x_0) = 0 = C_1 y_1'(x_0) + C_2 y_2'(x_0)$

Step 3 We can write these two conditions in the following form

$$\begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = 0$$

Step 4 Since

 $\begin{pmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{pmatrix} \neq 0$

as y_1 and y_2 are linearly independent solutions and so their Wronskian cannot be zero at x_0 (and hence also not at any value of x). The solution is possible when

$$\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = 0$$
$$y(x) = 0 \quad \forall \ x \in I$$

Summary

The Wronskian

- For a general second order linear homogeneous differential equation in y(x) in the Normal Form or Standard Form y'' + p(x)y' + q(x)y = 0 where p(x) and q(x) are either constants or functions of x alone, we have noticed that the solution to the above equation is made up of a Basis $y_1(x) \& y_2(x)$ which are linearly independent solutions to the DE.
- The solutions $y_1(x) \& y_2(x)$ will be *linearly independent* on an interval *I* if and only if $C_1y_1(x) + C_2y_2(x) = 0$ on *I* implies that $C_1 = 0 \& C_2 = 0$. Further, recall that $y_1(x) \& y_2(x)$ will be *linearly dependent* solutions on the interval I if we can express $y_1(x) = ay_2(x)$ or $y_2(x) = by_1(x)$ i.e., when $y_1 \& y_2$ are proportional.
- the Wronskian, W, for the two solutions above is defined as

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_2 y_1'$$

Theorem

- If the Second Order Linear Homogeneous DE y'' + p(x)y' + q(x)y = 0 Has continuous coefficients p(x) & q(x) on an open interval *I*, then the two solutions $y_1(x) \& y_2(x)$ are **Linearly Dependent** on the open interval *I*;
 - (i) **If** and only if their Wronskian W is zero **at some** x_0 on I
 - (ii) If the Wronskian W = 0 for $x = x_0$ then W = 0 at every x on I
 - (iii) If and only if their Wronskian W is non-zero at some x_0 on I then the two

solutions $y_1(x) \otimes y_2(x)$ are **Linearly Independent** on the open interval I

Fundamental Theorems

The Theorem

- Suppose that $a_1 \& a_0$ are two arbitrary constants and there is an equation of the form $L(y) = y'' + a_1y' + a_0y = 0$. If $\lambda_1 \& \lambda_2$ are two distinct roots of the characteristics polynomial $p(\lambda) = \lambda^2 + a_1\lambda + a_0 = 0$ then the functions $y_1 = e^{\lambda_1 x} \& y_2 = e^{\lambda_2 x}$ are the solutions of the equation L(y) = 0. If, however, $\lambda_1 = \lambda_2 = \lambda$ is a repeated root of the polynomial $p(\lambda) = 0$ then the functions $y_1 = e^{\lambda x} \& y_2 = xe^{\lambda x}$ are the solutions of the equation L(y) = 0.

Theorem of Existence

- There exists a solution y of the initial value problem $L(y) = y'' + a_1y' + a_0y = 0$ on $-\infty < x < \infty$ for any real x_0 and constants $y(x_0) = \alpha$ and $y'(x_0) = \beta$.

Theorem of Uniqueness

- On any interval I, a linear DE $L(y) = y'' + a_1y' + a_0y = 0$ on $-\infty < x < \infty$ with the initial conditions $y = \alpha$ and $y' = \beta$ for any real x_0 has at most one solution $y = C_1y_1 + C_2y_2$

Bibliography/ References / Glossary

- 1. Advanced Engineering Mathematics by Erwin Kreysig
- 2. Advanced Engineering Mathematics by Michael D. Greenberg
- 3. Schaum's Outline: Theory and Problems of Advanced Calculus by Murray R. Spiegel
- 4. Mathematical Methods in Physical Sciences by Mary L. Boas
- 5. Calculus & Analytic Geometry by Fobes & Smyth
- 6. Essential Mathematical Methods by K.F. Riley & M.P. Hobson
- 7. Schaum's Outline: Theory and Problems of Differential Equations by Richard Bronson
- 8. Schaum's Outline: Theory and Problems of Differential Equations by Frank Ayres
- 9. Introductory Course in Differential Equations by Daniel A. Murray
- 10. Differential Equations by N.M. Kapoor
- 11. Higher Engineering Mathematics by B S Grewal
- 12. A Treatise on Differential Equations by A. R. Forsyth