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Learning Objectives 

 

In this chapter the student will understand  

 

 what is the Wronskian, a basis and how to check for linear independence 

and dependence of solutions of Second Order DE?   

 Fundamental Theorems on solutions of Second Order DE with constant 

coefficients. 

 Theorem of Existence of at least one solution for an initial value Second 

Order DE with constant coefficients. 

 Theorem of Uniqueness of at most one solution for an initial value 

Second Order DE with constant coefficients. 
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Second Order Linear Homogeneous DE (continued) 
 

 

7.1 The Wronskian 
 

Consider the general second order linear homogeneous differential equation in 𝑦(𝑥) in the 

Normal Form or Standard Form  

 

𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 

 

where 𝑝(𝑥) and 𝑞(𝑥) are either constants or functions of 𝑥 alone. By now we would have 

noticed that the solution to the above equation is made up of a Basis 𝑦1(𝑥) & 𝑦2(𝑥) which 

are linearly independent solutions to the DE.   

 

Now let’s recall that 𝑦1(𝑥) & 𝑦2(𝑥) will be linearly independent on an interval I if and only if  

 

𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) = 0 

 

on I implies that 𝐶1 = 0 & 𝐶2 = 0. Further, recall that 𝑦1(𝑥) & 𝑦2(𝑥) will be linearly 

dependent solutions on the interval I if we can express  

  

𝑦1(𝑥) = 𝑎𝑦2(𝑥) 𝑜𝑟 𝑦2(𝑥) = 𝑏𝑦1(𝑥) 

 

i.e., when 𝑦1 & 𝑦2 are proportional. 

 

A solution of the second order (linear or nonlinear) DE on some open interval 𝑎 < 𝑥 < 𝑏 is 

function 𝑦𝑝𝑖(𝑥) that has defined derivatives 𝑦𝑝𝑖′(𝑥) and 𝑦𝑝𝑖 ′′(𝑥) and satisfies that DE for all 

𝑥 in that interval. In other words the DE becomes an identity if we replace the unknown 

function 𝑦(𝑥) & its derivatives by 𝑦𝑝𝑖(𝑥) and its derivatives 𝑦𝑝𝑖′(𝑥) & 𝑦𝑝𝑖 ′′(𝑥). To understand 

the linear independence of the solutions we would like to now introduce an important 

quantity called, the Wronskian, W. For the two solutions above W is defined as 

  

𝑊 = |
𝑦1 𝑦2

𝑦1′ 𝑦2′| =  𝑦1𝑦2′ − 𝑦2𝑦1′  

  

7.2 Theorem 
  

If the Second Order Linear Homogeneous DE 

 

 𝒚′′ + 𝒑(𝒙)𝒚′ + 𝒒(𝒙)𝒚 = 𝟎    (1) 

 

Has continuous coefficients 𝒑(𝒙) & 𝒒(𝒙) on an open interval 𝑰, then the two 

solutions 𝒚𝟏(𝒙) & 𝒚𝟐(𝒙) are Linearly Dependent on the  open interval 𝑰; 

 

(i) If and only if their Wronskian 𝑾 is zero at some 𝒙𝟎 on I 

(ii) If the Wronskian 𝑾 = 𝟎 for 𝒙 = 𝒙𝟎 then 𝑾 = 𝟎 at every 𝒙 on I    

(iii) If and only if their Wronskian 𝑾 is non- zero at some 𝒙𝟎 on I then the two 

solutions  𝒚𝟏(𝒙) & 𝒚𝟐(𝒙) are Linearly Independent on the  open interval 𝑰 
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Proof 

(i) If and only if their Wronskian 𝑊 is zero at some 𝑥0 on I 

If we consider 𝑦1(𝑥) & 𝑦2(𝑥) as two linearly dependent solutions of the Homogeneous DE 

on an interval 𝐼 such that  

𝑦1(𝑥) = 𝑘𝑦2(𝑥)      ∀ 𝑥 ∈ 𝐼 

 

Their Wronskian will be 

 

𝑊(𝑦1, 𝑦2) = 𝑊(𝑘𝑦2, 𝑦2) = |
𝑘𝑦2 𝑦2

𝑘𝑦2′ 𝑦2′
| = 𝑘𝑦2 × 𝑦2

′ − 𝑘𝑦2
′ × 𝑦2 = 0 

 

for all 𝑥 ∈ 𝐼. Therefore it is true for 𝑥 = 𝑥0. 

 

Only if : Conversely, assume that for some 𝑥 = 𝑥0 on I, the Wronskian 𝑊(𝑦1 , 𝑦2)𝑥=𝑥0
= 0 

i.e.,  

|
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
| = 0 

 

Now for some non-zero values of 𝐶1 & 𝐶2 we can write  

 

(
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
) (

𝐶1

𝐶2
) = 0 

 

The reason for writing the above equation is the belief that the solutions  𝑦1(𝑥) & 𝑦2(𝑥) will 

finally come out to be as two linearly dependent solutions of the Homogeneous DE on an 

interval 𝐼. So we can write at 𝑥 = 𝑥0 

 

𝐶1𝑦1(𝑥0) + 𝐶2𝑦2(𝑥0) = 0 

and 

𝐶1𝑦1′(𝑥0) + 𝐶2𝑦2′(𝑥0) = 0 

 

Using these non-zero values of 𝐶1 & 𝐶2 we define a function 

 

𝑦(𝑥) = 𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) 

 

Since 𝑦1(𝑥) & 𝑦2(𝑥) are solutions by Fundamental Theorem of Superposition, a linear 

combination of the two solutions must also be a solution. Therefore, 𝑦(𝑥) is a 

solution with the property that at 𝑥0 

 

𝑦(𝑥0) = 0 

𝑦′(𝑥0) = 0 

 

However, we note that there is another function 𝑌(𝑥) = 0   ∀ 𝑥 ∈ 𝐼 (the trivial solution) 

which is a solution to the DE with the same property that  

 

𝑌(𝑥0) = 0 

𝑌′(𝑥0) = 0 

 

Lastly, from the Uniqueness Theorem (discussed later in the chapter) a particular 

curve must pass through 𝑥0, satisfying the above initial conditions (for both 𝑌(𝑥) and 𝑦(𝑥) 
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at 𝑥0 ). Thus 𝒀(𝒙) must be equal to 𝒚(𝒙) as two different curves cannot pass 

through the same point and have the same slope at that point without being 

identical. So  

 

𝑦(𝑥) = 𝑌(𝑥) = 0 

𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) = 0 

𝑦1(𝑥) ∝ 𝑦2(𝑥) 

 

i.e. 𝑦1 and 𝑦2 are linearly dependent solutions. This theorem represents the Principle of 

Superposition and, should be noted, does not hold for Non-Homogeneous / Non-Linear 

DE. 

 

(ii) If the Wronskian 𝑊 = 0  for 𝑥 = 𝑥0 then 𝑊 = 0 at every 𝑥 on I 

If 𝑦1(𝑥) & 𝑦2(𝑥) are two solutions of the second order Homogeneous DE (1) on an interval 

𝐼 containing a point 𝑥0 then it follows  

𝑦1
′′(𝑥) = −𝑝(𝑥)𝑦1

′(𝑥) − 𝑞(𝑥)𝑦1(𝑥) 

𝑦2
′′(𝑥) = −𝑝(𝑥)𝑦2

′(𝑥) − 𝑞(𝑥)𝑦2(𝑥) 

 

Their Wronskian will be 

 

𝑊(𝑦1, 𝑦2) = |
𝑦1 𝑦2

𝑦1′ 𝑦2′| = 𝑦1 × 𝑦2
′ − 𝑦1

′ × 𝑦2 

 

for all 𝑥 ∈ 𝐼. And its derivative would be 

 

𝑊′(𝑦1, 𝑦2) = 𝑦1
′  × 𝑦2

′ + 𝑦1 × 𝑦2
′′ − 𝑦1

′′ × 𝑦2 − 𝑦1
′ × 𝑦2

′  

𝑊′(𝑦1 , 𝑦2) = 𝑦1 × 𝑦2
′′ − 𝑦1

′′ × 𝑦2 

𝑊′(𝑦1, 𝑦2) = 𝑦1 × {−𝑝𝑦2
′ − 𝑞𝑦2} − {−𝑝𝑦1

′ − 𝑞𝑦1} × 𝑦2 

𝑊′(𝑦1, 𝑦2) = −𝑝𝑦2
′𝑦1 − 𝑞𝑦2𝑦1 + 𝑝𝑦1

′𝑦2 + 𝑞𝑦1𝑦2 

𝑊′(𝑦1, 𝑦2) = 𝑝𝑦1
′𝑦2 − 𝑝𝑦2

′𝑦1 

𝑊′(𝑦1, 𝑦2) = 𝑝(𝑦1
′𝑦2 − 𝑦2

′𝑦1) 

𝑊′(𝑦1, 𝑦2) = −𝑝𝑊(𝑦1 , 𝑦2) 

𝑊′(𝑦1, 𝑦2) + 𝑝𝑊(𝑦1 , 𝑦2) = 0 

   

This is a first order linear DE which can be solved by separation of variable 

 

ln|𝑊(𝑥)| = − ∫ 𝑝(𝜉)𝑑𝜉
𝑥

 

𝑊(𝑥) = 𝑒− ∫ 𝑝(𝜉)𝑑𝜉
𝑥

 

 

It would be true that at 𝑥 = 𝑥0  

 

𝑊(𝑥0) = 𝑒− ∫ 𝑝(𝜉)𝑑𝜉
𝑥0

 

 

Thus,  

 

𝑊(𝑥)

𝑊(𝑥0)
=

𝑒− ∫ 𝑝(𝜉)𝑑𝜉
𝑥

𝑒− ∫ 𝑝(𝜉)𝑑𝜉
𝑥0

= 𝑒− ∫ 𝑝(𝜉)𝑑𝜉
𝑥

+∫ 𝑝(𝜉)𝑑𝜉
𝑥0

= 𝑒
− ∫ 𝑝(𝜉)𝑑𝜉

𝑥
𝑥0  
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𝑊(𝑥) = 𝑊(𝑥0)𝑒
− ∫ 𝑝(𝜉)𝑑𝜉

𝑥
𝑥0  

 

Since 𝑝(𝜉) is continuous on the interval I, thus the RHS is finite quantity so if 𝑊(𝑥0) = 0 

on I then 𝑊(𝑥) = 0 at every 𝑥 on I. 

 

(iii) If and only if their Wronskian 𝑊 is non- zero at some 𝑥0 on I then the two 

solutions 𝑦1(𝑥) & 𝑦2(𝑥) are Linearly Independent on the  open interval 𝐼 

Let 𝑦1(𝑥) & 𝑦2(𝑥) be two linearly independent solutions of the Homogeneous DE on an 

interval 𝐼 containing a point 𝑥0. Also let at the point 𝑥0 the Wronskian of the two solutions 

𝑊(𝑦1, 𝑦2)𝑥=𝑥0
= 0 so that  

|
𝑦1 𝑦2

𝑦1′ 𝑦2′|
𝑥=𝑥0

= 0 

 

We can find two non-zero constants 𝐶1 & 𝐶2 such that 

 

(
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
) (

𝐶1

𝐶2
) = 0 

   

If we define a function  

𝑦(𝑥) = 𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) 

 

Then it is obvious that this function would satisfy the initial conditions 

 

𝑦(𝑥0) = 𝐶1𝑦1(𝑥0) + 𝐶2𝑦2(𝑥0) = 0 

and 

𝑦′(𝑥0) = 𝐶1𝑦1′(𝑥0) + 𝐶2𝑦2′(𝑥0) = 0 

   

The function 𝑦(𝑥) therefore is a solution to the DE satisfying the initial conditions.  

However, there exists a trivial solution 𝑌(𝑥) = 0 of the DE which satisfies the initial 

condition 

   

𝑌(𝑥0) = 0 

and 

𝑌′(𝑥0) = 0 

   

By Uniqueness Theorem we find    

   

𝑦(𝑥) = 𝑌(𝑥) 

𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) = 0 

𝑦1(𝑥) ∝ 𝑦2(𝑥) 

 

which means that 𝑦1(𝑥) & 𝑦2(𝑥) are linearly dependent. This however contradicts our initial 

assumption of  𝑦1(𝑥) & 𝑦2(𝑥) being linearly independent. Hence, if 𝒚𝟏(𝒙) & 𝒚𝟐(𝒙) are 

linearly independent then there is no point 𝒙𝟎 ∈ 𝑰 for which the Wronskian is 

zero 𝑾(𝒚𝟏, 𝒚𝟐)𝒙=𝒙𝟎
= 𝟎. 

Conversely, let 𝑦1(𝑥) & 𝑦2(𝑥)  be two solutions of the DE such that at some point 𝑥0 ∈ 𝐼 the 

Wronskian is non-zero 𝑊(𝑦1, 𝑦2)𝑥=𝑥0
≠ 0 and 𝐶1 & 𝐶2 be two non-zero constants such that 

 

𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) = 0 ∀ 𝑥 ∈ 𝐼 
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From the second assumption we can write for some point 𝑥0 ∈ 𝐼 

 

𝐶1𝑦1(𝑥0) + 𝐶2𝑦2(𝑥0) = 0 

and 

𝐶1𝑦1′(𝑥0) + 𝐶2𝑦2′(𝑥0) = 0 

   

We can write it in matrix form as 

 

(
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
) (

𝐶1

𝐶2
) = 0 

 

Since we have assumed that 

 

𝑊(𝑦1, 𝑦2)𝑥=𝑥0
= |

𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
| ≠ 0 

 

it implies that 𝐶1 & 𝐶2 have to be zero. Thus, 𝑦1(𝑥) & 𝑦2(𝑥) as two linearly dependent 

solutions of the Homogeneous DE on an interval 𝐼 since we cannot find any 𝐶1 & 𝐶2 which 

are non-zero.  

 

Examples of Wronskian: 

 

Example 7.2.1 Check that the two solutions of the Linear Homogeneous DE are 

independent or not  

 

𝒚′′ + 𝒌𝟐𝒚 = 𝟎 

 

Solution:  

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing 𝑦′′ → 𝜆2, 

𝑦′ → 𝜆 & 𝑦 → 1   

𝜆2 + 𝑘2 = 0 

The roots are then found as  

𝜆2 = −𝑘2 

𝜆 = 𝑖𝑘 & 𝜆 = −𝑖𝑘 

𝛼 = 0 & 𝛽 = 𝑘 

 

Step 2 The two solutions would be   

 

𝑦1 = 𝑒0×𝑥 cos 𝑘𝑥 = cos 𝑘𝑥 

𝑦2 = 𝑒0×𝑥 sin 𝑘𝑥 = sin 𝑘𝑥 

 

Step 3 We now determine the Wronskian  

 

𝑊(𝑦1, 𝑦2) = |
𝑦1(𝑥) 𝑦2(𝑥)

𝑦1′(𝑥) 𝑦2′(𝑥)
| = |

cos 𝑘𝑥 sin 𝑘𝑥
−𝑘 sin 𝑘𝑥 𝑘 cos 𝑘𝑥

| 

𝑊(𝑦1, 𝑦2) = 𝑘 cos2 𝑘𝑥 + 𝑘 sin2 𝑘𝑥 = 𝑘(cos2 𝑘𝑥 + sin2 𝑘𝑥) 

𝑊(𝑦1, 𝑦2) = 𝑘 

 

and the two solutions cos 𝑘𝑥  & sin 𝑘𝑥 will be linearly independent if and only if 𝑘 ≠ 0.  



  Second Order Linear Homogeneous Differential Equation (continued) 

Institute of Lifelong Learning, University of Delhi                                9 

 

 

7.3 Fundamental Theorems 
 

Consider a general Homogeneous Second Order Linear DE  

 

𝐿(𝑦) = 𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 

 

From its Characteristics Equation  

𝜆2 + 𝑎1𝜆 + 𝑎0 = 0 

 

we have been seeing that it has two linearly independent solutions 𝑦1 &  𝑦2. We now write 

it formally as the following theorem: 

 

7.3.1 The Theorem 

  

Suppose that 𝒂𝟏 & 𝒂𝟎 are two arbitrary constants and there is an equation 

of the form 

 

𝑳(𝒚) = 𝒚′′ + 𝒂𝟏𝒚′ + 𝒂𝟎𝒚 = 𝟎  

 

If 𝝀𝟏 & 𝝀𝟐 are two distinct roots of the characteristics polynomial 

 

𝒑(𝝀) = 𝝀𝟐 + 𝒂𝟏𝝀 + 𝒂𝟎 = 𝟎 

 

then the functions 𝒚𝟏 = 𝒆𝝀𝟏𝒙 & 𝒚𝟐 = 𝒆𝝀𝟐𝒙 are the solutions of the equation 

𝑳(𝒚) = 𝟎. If, however, 𝝀𝟏 = 𝝀𝟐 = 𝝀 is a repeated root of the polynomial 

𝒑(𝝀) = 𝟎 then the functions 𝒚𝟏 = 𝒆𝝀𝒙 & 𝒚𝟐 = 𝒙𝒆𝝀𝒙 are the solutions of the 

equation 𝑳(𝒚) = 𝟎. 

 

Example 7.3.1.1 Find the independent solutions for the Linear Homogeneous DE  

 

𝒚′′ + 𝟗𝒚 = 𝟎 

 

Solution:  

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing 𝑦′′ → 𝜆2, 

𝑦′ → 𝜆 & 𝑦 → 1   

𝜆2 + 9 = 0 

The roots are then found as  

𝜆2 = −9 

𝜆 = 3𝑖 & 𝜆 = −3𝑖 

𝛼 = 0 & 𝛽 = 3 

 

Step 2 The two independent solutions would be   

 

𝑦1 = 𝑒0×𝑥 cos 3𝑥 = cos 3𝑥 

𝑦1 = 𝑒0×𝑥 sin 3𝑥 = sin 3𝑥 
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We have also learnt that all general solutions 𝒚 must be a linear combination of 

the two independent solutions 𝒚𝟏 & 𝒚𝟐. Now consider a general Homogeneous Second 

Order Linear DE  

 

𝐿(𝑦) = 𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 

 

with some initial or boundary condition on the value of the solution 𝑦 and its derivative 𝑦′ 

at some point 𝑥0. The general solution would be  

 

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 

 

of which some combination of 𝐶1 & 𝐶2 would satisfy the initial conditions. It’s natural to 

ask whether such solution exists and whether they would be unique? 

 

7.3.2 Theorem of Existence 

  

There exists a solution 𝒚 of the initial value problem  

 

𝑳(𝒚) = 𝒚′′ + 𝒂𝟏𝒚′ + 𝒂𝟎𝒚 = 𝟎 

 

on −∞ < 𝒙 < ∞ for any real 𝒙𝟎 and constants 𝒚(𝒙𝟎) = 𝜶 and 𝒚′(𝒙𝟎) = 𝜷. 

 

Proof 

We know that for an equation 𝐿(𝑦) = 0 we can write the characteristic polynomial 

equation 𝑝(𝜆) = 0. The roots of the polynomial will then determine the two linearly 

independent solutions of the DE. We have two ways to write the solution 

𝑦1(𝑥) & 𝑦2(𝑥) corresponding to these roots 

(i) If 𝜆1 & 𝜆2 are distinct then 𝑦1(𝑥) = 𝑒𝜆1𝑥  & 𝑦2(𝑥) = 𝑒𝜆2𝑥 

(ii) If 𝜆1 & 𝜆2 are equal (𝜆) then 𝑦1(𝑥) = 𝑒𝜆𝑥 & 𝑦2(𝑥) = 𝑥𝑒𝜆𝑥 

We shall now show that there exist constants C1 & C2 such that  

  

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 

 

satisfies 𝑦(𝑥0) = 𝛼 and 𝑦′(𝑥0) = 𝛽 where 𝑥0 is some real number and 𝛼, 𝛽 are given 

constants.  

Following these conditions we have at 𝑥0 

  

𝐶1𝑦1(𝑥0) + 𝐶2𝑦2(𝑥0) = 𝛼 

𝐶1𝑦1′(𝑥0) + 𝐶2𝑦2′(𝑥0) = 𝛽 
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These equations will have non-zero 𝐶1, 𝐶2 if the determinant 

 

∆= |
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
| ≠ 0 

 

We check this for the two cases 

(i) When the roots are distinct 

 

∆= |
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
| = 𝑦1(𝑥0)𝑦2′(𝑥0) − 𝑦2(𝑥0)𝑦1′(𝑥0) 

∆= 𝑒𝜆1𝑥0 ×  𝜆2𝑒𝜆2𝑥0 − 𝑒𝜆2𝑥0 ×  𝜆1𝑒𝜆1𝑥0 = (𝜆2 − 𝜆1)𝑒(𝜆1+𝜆2)𝑥0 

 

  This is not zero as 𝜆2 ≠ 𝜆1 and 𝑒(𝜆1+𝜆2)𝑥0 ≠ 0. Thus, 

∆≠ 0 

(ii) When the roots are equal 

 

∆== |
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
| = 𝑦1(𝑥0)𝑦2′(𝑥0) − 𝑦2(𝑥0)𝑦1′(𝑥0) 

∆=  [𝑒𝜆𝑥 ×
𝑑

𝑑𝑥
(𝑥𝑒𝜆𝑥) − (𝑥𝑒𝜆𝑥) ×

𝑑

𝑑𝑥
(𝑒𝜆𝑥)]|

𝑥=𝑥0

 

∆= 𝑒𝜆𝑥0 ×  (𝑒𝜆𝑥0 + 𝑥𝜆𝑒𝜆𝑥0)|
𝑥=𝑥0

− (𝑥0𝑒𝜆𝑥0) ×  𝜆𝑒𝜆𝑥0 

∆= (1 + 𝑥0𝜆 − 𝑥0𝜆)𝑒2𝜆𝑥0 = 𝑒2𝜆𝑥0 

 

  This is also not zero as 𝑒2𝜆𝑥0 ≠ 0. Thus, 

∆≠ 0 

 

Since in both the cases the determinants are non-zero for any choice of 𝑥0, 𝛼 & 𝛽, 

we will always find some non-zero 𝐶1 & 𝐶2. This guarantees existence of a solution 

 

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 

 

From the above theorem, we have come to know that a general Homogeneous 

Second Order Linear DE  

 

𝑳(𝒚) = 𝒚′′ + 𝒂𝟏𝒚′ + 𝒂𝟎𝒚 = 𝟎 

 

with some initial or boundary condition on the value of the solution 𝒚 and its 

derivative 𝒚′ at some point 𝒙𝟎 must have a solution  

 

𝒚 = 𝑪𝟏𝒚𝟏 + 𝑪𝟐𝒚𝟐 

 

Understanding for Students 

If we plot the solution 𝑦 vs 𝑥, then the initial condition 𝑦(𝑥0) = 𝛼 represents the point on 

the 𝑦 − 𝑥 plane as shown in the figure 
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Now if 𝑦′(𝑥0) = 𝛽, then this defines the rate of change of 𝑦 at the point 𝑥0 to be equal to 

𝛽. This means that at the point (𝑥0, 𝛼) there passes a curve with a slope of 𝛽. 

  

 
 

We may now ask the question in accordance to the existence theorem, will there be any 

other curve passing through the same point (𝑥0, 𝛼)? Now suppose if we also have 

𝑦′(𝑥0) = 𝛾, then we shall have another curve passing through the same point (𝑥0, 𝛼) but 

having 𝛾 as the value of the slope.  This means that we have found atleast two curves 

passing through the same point (𝑥0, 𝛼) but with different slopes. These two curves 

represent different initial conditions 𝑦(𝑥0) = 𝛼, 𝑦′(𝑥0) = 𝛽 and 𝑦(𝑥0) = 𝛼, 𝑦′(𝑥0) = 𝛾. 
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We find that the Existence Theorem allows at least one solution for each of these cases 

with different initial conditions.  

 

Now the next question could be: will there be two different curves passing through the 

same point having same slope at that point? The figure below shows such a 

hypothetical situation (the blue and the green curves pass through the same point and 

have the sae same slope at that point) and the next theorem explicitly tells us that only 

one curve will pass through the point (𝑥0,) with the same initial conditions.   

 

 
 

From the uniqueness theorem we see later that only one type of curve can pass the 

point (𝑥0, 𝛼) with fixed initial conditions. 

 

Example 7.3.2.1 Find the initial value 𝒚(𝟎) = 𝟎 & 𝒚′(𝟎) = 𝟑 solution for the Linear 

Homogeneous DE  

 

𝒚′′ + 𝟗𝒚 = 𝟎 

 

Solution:  

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing 𝑦′′ → 𝜆2, 

𝑦′ → 𝜆 & 𝑦 → 1   

𝜆2 + 9 = 0 
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The roots are then found as  

𝜆2 = −9 

𝜆 = 3𝑖 & 𝜆 = −3𝑖 

𝛼 = 0 & 𝛽 = 3 

 

Step 2 The two independent solutions would be   

 

𝑦1 = 𝑒0×𝑥 cos 3𝑥 = cos 3𝑥 

𝑦2 = 𝑒0×𝑥 sin 3𝑥 = sin 3𝑥 

 

Step 3 We now write the general solution   

 

𝑦(𝑥) = 𝐶1 cos 3𝑥 + 𝐶2 sin 3𝑥 

 

Step 4 Since 𝑦(0) = 0 = 𝐶1 cos 0 + 𝐶2 sin 0 = 𝐶1 and 𝑦′(0) = 3 = −3𝐶1 sin 0 + 3𝐶2 cos 0 = 3𝐶2, we 

find 𝐶1 = 0 & 𝐶2 = 1. The solution is thus   

 

𝑦(𝑥) = sin 3𝑥    ∀   𝑥 ∈ 𝐼 

 

Example 7.3.2.2 Find the initial value 𝒚(𝟎) = 𝟎 & 𝒚′(𝟎) = 𝟏 solution for the Linear 

Homogeneous DE  

 

𝒚′′ + 𝟗𝒚 = 𝟎 

 

Solution: Since the Steps 1, 2 & 3 are same as above, we expect a general solution of 

the form  

 

𝑦(𝑥) = 𝐶1 cos 3𝑥 + 𝐶2 sin 3𝑥 

 

Step 4 Since 𝑦(0) = 0 = 𝐶1 cos 0 + 𝐶2 sin 0 = 𝐶1 and 𝑦′(0) = 1 = −3𝐶1 sin 0 + 3𝐶2 cos 0 = 3𝐶2, we 

find 𝐶1 = 0 & 𝐶2 = 1/3. The solution is thus   

 

𝑦(𝑥) =
1

3
sin 3𝑥    ∀   𝑥 ∈ 𝐼 

 

 
 

In the figure above, the red curve represents the solution satisfying the initial condition 

𝑦(0) = 0 & 𝑦′(0) = 3  and the green curve represents the solution satisfying the initial 

condition 𝑦(0) = 0 & 𝑦′(0) = 1. 
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We now answer the question that how many of solutions can be there which satisfies the 

same initial conditions? That is to say, is the combination of constants 𝐶1, 𝐶2 unique for a 

given initial condition?  

 

7.3.3 Theorem of Uniqueness 

  

On any interval I, a linear DE  

 

𝑳(𝒚) = 𝒚′′ + 𝒂𝟏𝒚′ + 𝒂𝟎𝒚 = 𝟎 

 

on −∞ < 𝒙 < ∞ with the initial conditions 𝒚 = 𝜶 and 𝒚′ = 𝜷 for any real 𝒙𝟎 has 

at most one solution  

 

𝒚 = 𝑪𝟏𝒚𝟏 + 𝑪𝟐𝒚𝟐 

 

Proof 

Let us suppose that the DE 

𝐿(𝑦) = 0 

 

has two different solutions 𝑌1(𝑥) &  𝑌2(𝑥) (as linear combination of the 

independent solutions 𝑦1 &  𝑦2 ) 

 

𝑌1 = 𝐶1𝑦1 + 𝐶2𝑦2 

𝑌2 = 𝐶3𝑦1 + 𝐶4𝑦2 

 

The two different solutions 𝑌1 &  𝑌2 satisfy the same initial conditions 

 

𝑌1(𝑥0) = 𝛼  &  𝑌1
′(𝑥0) = 𝛽 

𝑌2(𝑥0) = 𝛼  &  𝑌2
′(𝑥0) = 𝛽 

 

Since they are solutions to the DE, they satisfy  

 

𝐿(𝑌1) = 0   &   𝐿(𝑌2) = 0 

 

Let us now define another function 𝑌(𝑥) = 𝑌1(𝑥) − 𝑌2(𝑥), we then find that 

 

𝐿(𝑌) = 𝐿(𝑌1 − 𝑌2) = 𝐿(𝑌1) −  𝐿(𝑌2) = 0 − 0 

𝐿(𝑌) = 0 

 

Therefore the new function 𝑌(𝑥) must also be a solution of the DE.  

Further if we find the value of the new function and its derivative at the point 𝑥0 

 

𝑌(𝑥0) =  𝑌1(𝑥0) − 𝑌2(𝑥0) = 𝛼 − 𝛼 = 0 

𝑌′(𝑥0) =  𝑌1′(𝑥0) − 𝑌2′(𝑥0) = 𝛽 − 𝛽 = 0 

 

We would like to state here that any solution 𝒀(𝒙) of the DE 𝑳(𝒚) = 𝟎 having 

the initial conditions 𝒀(𝒙𝟎) = 𝟎 & 𝒀′(𝒙𝟎) = 𝟎 must be a trivial solution of the 

DE 𝑳(𝒚) = 𝟎. Thus, being the trivial solution, 𝑌(𝑥) = 0 for all 𝑥 ∈ 𝐼 and so it’s first 
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derivative 𝑌′(𝑥) = 0.  

 

The above conclusion is drawn from the following arguments: 

For any 𝑌(𝑥) being a solution of the DE 𝐿(𝑦) = 0   ∀ 𝑥 ∈ 𝐼 containing any point 𝑥0 in 

the interval 𝐼, the modulus of the solution & the rate of growth of the DE 𝐿(𝑦) =

𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 can be defined by 

 

‖𝑌(𝑥)‖ = √|𝑌(𝑥)|2  + |𝑌′(𝑥)|2     &     𝑘 = 1 + 𝑎1 + 𝑎0 

 

and thus for all 𝑥 in 𝐼 it can be shown that  

 

‖𝑌(𝑥0)‖𝑒−𝑘|𝑥−𝑥0| ≤ ‖𝑌(𝑥)‖ ≤  ‖𝑌(𝑥0)‖ 𝑒𝑘|𝑥−𝑥0| 

 

Since 𝑌(𝑥0) = 0 and 𝑌′(𝑥0) = 0 we find ‖𝑌(𝑥0)‖ = √|𝑌(𝑥0)|2  + |𝑌′(𝑥0)|2 = 0 and thus 

 

‖𝑌(𝑥0)‖𝑒−𝑘|𝑥−𝑥0| ≤ ‖𝑌(𝑥)‖ ≤  ‖𝑌(𝑥0)‖ 𝑒𝑘|𝑥−𝑥0|   →   0 ≤ ‖𝑌(𝑥)‖ ≤  0 

‖𝑌(𝑥)‖ = 0 

 

This implies that for all values of 𝑥 ∈ 𝐼  

  

‖𝑌(𝑥)‖ = √|𝑌(𝑥)|2  + |𝑌′(𝑥)|2 = 0 

|𝑌(𝑥)|2  + |𝑌′(𝑥)|2 = 0 

 

which will be satisfied only if we separately have  

 

𝑌(𝑥) = 0   &   𝑌′(𝑥)   ∀   𝑥 ∈ 𝐼 

 

 

This then means that for all 𝑥 ∈ 𝐼  

 

𝑌(𝑥) = 𝑌1(𝑥) − 𝑌2(𝑥) = 0   →    𝑌1(𝑥) = 𝑌2(𝑥) 

𝑌′(𝑥) = 𝑌1′(𝑥) − 𝑌2′(𝑥) = 0   →    𝑌1′(𝑥) = 𝑌2′(𝑥) 

 

Thus, for  𝑌1(𝑥) = 𝑌2(𝑥) and we get 

 

𝐶1𝑦1 + 𝐶2𝑦2 = 𝐶3𝑦1 + 𝐶4𝑦2   →   (𝐶1 − 𝐶3)𝑦1 = (𝐶4 − 𝐶2)𝑦2 

 

Since, the functions 𝑦1 & 𝑦2 are independent solutions of the DE 𝐿(𝑦) = 0, we find 

𝐶1 = 𝐶3  &  𝐶4 = 𝐶2 and so 

 

𝑌1(𝑥) = 𝑌2(𝑥) 

 

Therefore, the assumption that 𝑌1(𝑥) & 𝑌2(𝑥) are two different solutions of the DE 

𝐿(𝑦) = 0 satisfying the same initial condition (𝑦 = 𝛼 and 𝑦′ = 𝛽 for any real 𝑥0) 

does not hold and we conclude that the solution must be Unique. 

 

 

Example 7.3.3.1 For the initial conditions 𝒚′() = 𝟎 & 𝒚() = 𝟎 find the solution for 

the Linear Homogeneous DE  
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𝒚′′ + 𝟗𝒚 = 𝟎 

 

Solution:  

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing 𝑦′′ → 𝜆2, 

𝑦′ → 𝜆 & 𝑦 → 1   

𝜆2 + 9 = 0 

The roots are then found as  

𝜆2 = −9 

𝜆 = 0 + 3𝑖 & 𝜆 = 0 − 3𝑖 

 

Step 2 The two independent solutions would be   

 

𝑦1 = 𝑒0×𝑥 cos 3𝑥 = cos 3𝑥 

𝑦2 = 𝑒0×𝑥 sin 3𝑥 = sin 3𝑥 

 

Step 3 We now write the general solution as a linear combination of the above 

independent solutions as  

 

𝑦(𝑥) = 𝐶1 cos 3𝑥 + 𝐶2 sin 3𝑥 

 

Step 4 Using the initial conditions 

 

𝑦() = 0 = 𝐶1 cos 3 + 𝐶2 sin 3 

𝑡𝑎𝑛(3) = −𝐶1/𝐶2 

and 

𝑦′() = 0 = −3𝐶1 sin + 3𝐶2 cos 

𝑡𝑎𝑛(3) = 𝐶2/𝐶1 

 

we find   

−
𝐶1

𝐶2

=
𝐶2

𝐶1

 

 

or       𝐶1
2 +  𝐶2

2 = 0  

 

Which is possible only if 𝐶1 = 0 and 𝐶2 = 0. The trivial solution is thus   

 

𝑦(𝑥) = 0   ∀   𝑥 ∈ 𝐼 

 

Example 7.3.3.2 Find for the initial values 𝒚′(𝑥0) = 𝟎  &  𝒚(𝑥0) = 𝟎 the solution for 

the Linear Homogeneous DE  

 

𝒚′′ +  𝒚′ +  𝒚 = 𝟎 

 

Solution:  

Step 1 The Auxiliary Equation for the given DE will be obtained by replacing 𝑦′′ → 𝜆2, 

𝑦′ → 𝜆 & 𝑦 → 1   

𝜆2 +  𝜆′ +  𝜆 = 0 

 

The general solution 𝑦 written in terms of linearly independent solutions 𝑦1(𝑥) & 𝑦2(𝑥) 
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(obtained corresponding to values of 𝜆1 &  𝜆2 ) is 

 

𝑦 = 𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) 

 

Step 2 The initial conditions demand  

 𝑦(𝑥0) = 0 = 𝐶1𝑦1(𝑥0) + 𝐶2𝑦2(𝑥0) 

𝑦′(𝑥0) = 0 = 𝐶1𝑦1′(𝑥0) + 𝐶2𝑦2′(𝑥0)  

 

Step 3 We can write these two conditions in the following form   

 

(
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
) (

𝐶1

𝐶2
) = 0 

 

Step 4 Since 

(
𝑦1(𝑥0) 𝑦2(𝑥0)

𝑦1′(𝑥0) 𝑦2′(𝑥0)
) ≠ 0 

 

as 𝑦1 and 𝑦2 are linearly independent solutions and so their Wronskian cannot be zero at 

𝑥0  (and hence also not at any value of 𝑥). The solution is possible when 

    

(
𝐶1

𝐶2
) = 0 

𝑦(𝑥) = 0   ∀   𝑥 ∈ 𝐼 

 

 

 

Summary 
 

The Wronskian 

- For a general second order linear homogeneous differential equation in 𝑦(𝑥) in the 

Normal Form or Standard Form 𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 where 𝑝(𝑥) and 𝑞(𝑥) are 

either constants or functions of 𝑥 alone, we have noticed that the solution to the 

above equation is made up of a Basis 𝑦1(𝑥) & 𝑦2(𝑥) which are linearly independent 

solutions to the DE.   

- The solutions 𝑦1(𝑥) & 𝑦2(𝑥) will be linearly independent on an interval I if and only 

if 𝐶1𝑦1(𝑥) + 𝐶2𝑦2(𝑥) = 0 on I implies that 𝐶1 = 0 & 𝐶2 = 0. Further, recall that 

𝑦1(𝑥) & 𝑦2(𝑥) will be linearly dependent solutions on the interval I if we can express 

𝑦1(𝑥) = 𝑎𝑦2(𝑥) 𝑜𝑟 𝑦2(𝑥) = 𝑏𝑦1(𝑥) i.e., when 𝑦1 & 𝑦2 are proportional. 

- the Wronskian, W, for the two solutions above  is defined as 

  

𝑊 = |
𝑦1 𝑦2

𝑦1′ 𝑦2′| =  𝑦1𝑦2′ − 𝑦2𝑦1′  

  

Theorem 

- If the Second Order Linear Homogeneous DE  𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 Has 

continuous coefficients 𝑝(𝑥) & 𝑞(𝑥) on an open interval 𝐼, then the two solutions 

𝑦1(𝑥) & 𝑦2(𝑥) are Linearly Dependent on the  open interval 𝐼; 

(i) If and only if their Wronskian 𝑊 is zero at some 𝒙𝟎 on I 

(ii) If the Wronskian 𝑊 = 0 for 𝑥 = 𝑥0 then 𝑊 = 0 at every 𝒙 on I    

(iii) If and only if their Wronskian 𝑾 is non- zero at some 𝑥0 on I then the two 
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solutions  𝑦1(𝑥) & 𝑦2(𝑥) are Linearly Independent on the open interval 𝐼 

 

Fundamental Theorems 

The Theorem 

- Suppose that 𝑎1 & 𝑎0 are two arbitrary constants and there is an equation of the 

form 𝐿(𝑦) = 𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 . If 𝜆1 & 𝜆2 are two distinct roots of the 

characteristics polynomial 𝑝(𝜆) = 𝜆2 + 𝑎1𝜆 + 𝑎0 = 0 then the functions 𝑦1 = 𝑒𝜆1𝑥 & 𝑦2 =

𝑒𝜆2𝑥 are the solutions of the equation 𝐿(𝑦) = 0. If, however, 𝜆1 = 𝜆2 = 𝜆 is a 

repeated root of the polynomial 𝑝(𝜆) = 0 then the functions 𝑦1 = 𝑒𝜆𝑥 & 𝑦2 = 𝑥𝑒𝜆𝑥 are 

the solutions of the equation 𝐿(𝑦) = 0. 

Theorem of Existence 

- There exists a solution 𝒚 of the initial value problem 𝐿(𝑦) = 𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 on 

−∞ < 𝑥 < ∞ for any real 𝑥0 and constants 𝑦(𝑥0) = 𝛼 and 𝑦′(𝑥0) = 𝛽. 

Theorem of Uniqueness 

- On any interval I, a linear DE 𝐿(𝑦) = 𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 0 on −∞ < 𝑥 < ∞ with the 

initial conditions 𝑦 = 𝛼 and 𝑦′ = 𝛽 for any real 𝑥0 has at most one solution 𝑦 =

𝐶1𝑦1 + 𝐶2𝑦2 
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