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Learning Objective 

 

The student evolves further to calculate the solution of the Non-Homogeneous 

DE by finding the  

 

 Particular Integral for Special Forms of the Function 𝒇(𝒙) in the Non-

Homogeneous DE 

 rules to determine  𝑷𝑰 in shorter steps and learns the D-Operator 

 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙 

 When function 𝒇(𝒙) is of the form 𝒔𝒊𝒏 𝒂𝒙 or 𝒄𝒐𝒔 𝒂𝒙 

 When function 𝒇(𝒙) is of the form 𝒙𝒎, 𝒎 being a positive integer  

 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙𝑽(𝒙) 
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The D Operator & the Non-Homogeneous Equation 
 

 

9.1 Particular Integral of Special Forms of the Function 

f(x) 
 

As the previous two examples may have suggested finding 𝑃𝐼 could be very difficult 

involving tedious integrations. However, there are certain special forms of the function 

𝑓(𝑥) which admits rules for finding 𝑃𝐼 in shorter steps. We would explore such functions 

and show our confidence in the rules developed;  

 

9.2 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙 
 

If 𝑓(𝑥) = 𝑒𝑎𝑥 then we can see that  

𝐷𝑒𝑎𝑥 = 𝑎𝑒𝑎𝑥 

𝐷2𝑒𝑎𝑥 = 𝐷(𝐷𝑒𝑎𝑥) = 𝐷(𝑎𝑒𝑎𝑥) = 𝑎2𝑒𝑎𝑥 

and so on 

𝐷𝑛𝑒𝑎𝑥 = 𝑎𝑛𝑒𝑎𝑥 

 

So if 

    𝐿(𝐷) = 𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + ⋯ + 𝑎1𝐷 + 𝑎0  

then 

 

𝐿(𝐷)𝑒𝑎𝑥 = (𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + ⋯ + 𝑎1𝐷 + 𝑎0)𝑒𝑎𝑥 

𝐿(𝐷)𝑒𝑎𝑥 = (𝑎𝑛𝑎𝑛 + 𝑎𝑛−1𝑎𝑛−1 + ⋯ + 𝑎1𝑎 + 𝑎0)𝑒𝑎𝑥 

𝐿(𝐷)𝑒𝑎𝑥 = 𝐿(𝑎)𝑒𝑎𝑥 

 

Thus, operating on both sides by the “inverse” operator 
1

𝐿(𝐷)
 we find that  

 
1

𝐿(𝐷)
𝐿(𝐷)𝑒𝑎𝑥 =

1

𝐿(𝐷)
𝐿(𝑎)𝑒𝑎𝑥 

𝑒𝑎𝑥 = 𝐿(𝑎)
1

𝐿(𝐷)
𝑒𝑎𝑥 

 

Now if 𝐿(𝑎) ≠ 0 this can be interpreted as 

 

1

𝐿(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝐿(𝑎)
 

 

This beautiful result then states a rule that an 𝑛𝑡ℎ order Non-Homogeneous Linear DE 

with Constant coefficients    

𝐿(𝐷)𝑦 = 𝐴𝑒𝑎𝑥  

has the 𝑃𝐼 

𝑦 = 𝐴
𝑒𝑎𝑥

𝐿(𝑎)
  

which needs no integration to be performed. 

 

There may arise a situation where 𝐿(𝑎) = 0. This would then imply “𝑎” to be an 𝑟𝑡ℎ order 
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root of the 𝑛𝑡ℎ order Non-Homogeneous Linear DE with Constant coefficients so that 

        𝐿(𝐷) = (𝐷 − 𝑎)𝑟𝜑(𝐷).  

The 𝐷𝐸 can then be written as      

 

𝜑(𝐷)(𝐷 − 𝑎)𝑟𝑦 = 𝐴𝑒𝑎𝑥 

 

Operating on both sides by the “inverse” operator 
1

𝜑(𝐷)
 we find 

 
1

𝜑(𝐷)
𝜑(𝐷)(𝐷 − 𝑎)𝑟𝑦 =

1

𝜑(𝐷)
𝐴𝑒𝑎𝑥 

(𝐷 − 𝑎)𝑟𝑦 = 𝐴
𝑒𝑎𝑥

𝜑(𝑎)
 

 

From our previously learnt technique this yields 

 

𝑦 =
𝐴

𝜑(𝑎)

𝑥𝑟

𝑟!
𝑒𝑎𝑥 

 

Example 9.2.1 Solve the equation 

 

𝒚′′ + 𝒚′ + 𝒚 = 𝒆−𝒙 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦   &   𝑦′ → 𝐷𝑦  

  

(𝐷2 + 𝐷 + 1)𝑦 = 𝑒−𝑥 

𝐿(𝐷)𝑦 = 𝑒−𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 

 

         𝐿(𝐷)𝑦 = 0  

will be obtained by writing 

         𝐿(𝜆) = 0   

𝜆2 + 𝜆 + 1 = 0 

𝜆1 =
−1 + √12 − 4

2
 & 𝜆2 =

−1 − √12 − 4

2
 

𝜆1 =
−1 + √−3

2
 & 𝜆2 =

−1 − √−3

2
 

 

The roots are then found as  

𝜆1 = −
1

2
+ 𝑖

√3

2
 & 𝜆2 = −

1

2
− 𝑖

√3

2
 

 

The 𝐶𝐹 would be 𝐶1𝑒
(−

1

2
+𝑖

√3

2
)𝑥

+ 𝐶2𝑒
(−

1

2
−𝑖

√3

2
)𝑥

 which can be represented as  

 

𝐶𝐹 = 𝑒−
𝑥
2 {𝐶1 cos (

√3

2
𝑥) + 𝐶2 sin (

√3

2
𝑥)} 

 

Step 3 The 𝑃𝐼 would now be obtained as   
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𝑃𝐼 =
1

𝐿(𝐷)
𝑒−𝑥 

Since 𝑓(𝑥) = 𝑒−𝑥 is an exponential function we will use the rule 
1

𝐿(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝐿(𝑎)
 to find the 𝑃𝐼  

  

𝑃𝐼 =
1

𝐿(𝐷)
𝑒−𝑥 =

𝑒−𝑥

𝐿(−1)
 

𝑃𝐼 =
𝑒−𝑥

{(−1)2 + (−1) + 1}
 

𝑃𝐼 =
𝑒−𝑥

{1 + (−1) + 1}
= 𝑒−𝑥 

 

Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝑒−
𝑥
2 {𝐶1 cos (

√3

2
𝑥) + 𝐶2 sin (

√3

2
𝑥)} + 𝑒−𝑥 

 

 

Example 9.2.2 Solve the equation 

 

𝒚′′ − 𝟒𝒚′ + 𝟒𝒚 = 𝒆𝒙 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦   &   𝑦′ → 𝐷𝑦  

  

(𝐷2 − 4𝐷 + 4)𝑦 = 𝑒𝑥 

𝐿(𝐷)𝑦 = 𝑒𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 

 

         𝐿(𝐷)𝑦 = 0  

will be obtained by writing 

         𝐿(𝜆) = 0   

𝜆2 − 4𝜆 + 4 = 0 

𝜆1 =
−(−4) + √(−4)2 − 4 × 4

2
 & 𝜆2 =

−(−4) − √(−4)2 − 4 × 4

2
 

𝜆1 = 2 & 𝜆2 = 2 

 

The roots are then found to a double root  

𝜆1 = 𝜆2 = 2 

 

The 𝐶𝐹 would be  

 

𝐶𝐹 = (𝐶1𝑥 + 𝐶2)𝑒2𝑥 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
𝑒𝑥 
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Since 𝑓(𝑥) = 𝑒−𝑥 is an exponential function we will use the rule 
1

𝐿(𝐷)
𝑒𝑎𝑥 =

𝑒𝑎𝑥

𝐿(𝑎)
 to find the 𝑃𝐼  

  

𝑃𝐼 =
1

𝐿(𝐷)
𝑒𝑥 =

𝑒𝑥

𝐿(1)
 

𝑃𝐼 =
𝑒−𝑥

{12 − 4(1) + 4}
 

 

𝑃𝐼 = 𝑒𝑥 

 

Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = (𝐶1𝑥 + 𝐶2)𝑒2𝑥 + 𝑒𝑥 

 

 

 

9.3 When function 𝒇(𝒙) is of the form 𝒔𝒊𝒏 𝒂𝒙 or 𝒄𝒐𝒔 𝒂𝒙 
 

If 𝑓(𝑥) = sin(𝑎𝑥 + 𝜃) then we can see that 

  

𝐷 sin(𝑎𝑥 + 𝜃) = 𝑎 cos(𝑎𝑥 + 𝜃) 

𝐷2 sin(𝑎𝑥 + 𝜃) = 𝐷(𝐷 sin(𝑎𝑥 + 𝜃)) = 𝐷(𝑎 cos(𝑎𝑥 + 𝜃)) = −𝑎2 sin(𝑎𝑥 + 𝜃) 

𝐷3 sin(𝑎𝑥 + 𝜃) = −𝑎3 cos(𝑎𝑥 + 𝜃) 

𝐷4 sin(𝑎𝑥 + 𝜃) = 𝑎4 cos(𝑎𝑥 + 𝜃) = (−𝑎2)2 cos(𝑎𝑥 + 𝜃) 

 

and so on 

(𝐷2)𝑛 sin(𝑎𝑥 + 𝜃) = (−𝑎2)𝑛 sin(𝑎𝑥 + 𝜃) 

 

So if 

       𝐿(𝐷) = 𝑎𝑛𝐷2𝑛 + ⋯ + 𝑎2𝐷4 + 𝑎1𝐷2 + 𝑎0  

contains only even powers of the operator 𝐷 then it can be seen as polynomial 𝜑 in 𝐷2 of 

power 𝑛 so that 

 

𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) = {𝑎𝑛(𝐷2)𝑛 + ⋯ + 𝑎2(𝐷2)2 + 𝑎1(𝐷2) + 𝑎0} sin(𝑎𝑥 + 𝜃) 

𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) = {𝑎𝑛(−𝑎2)𝑛 + ⋯ + 𝑎2(−𝑎2)2 + 𝑎1(−𝑎2) + 𝑎0} sin(𝑎𝑥 + 𝜃) 

𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) = 𝜑(−𝑎2) sin(𝑎𝑥 + 𝜃) 

 

Thus, operating on both sides by the “inverse” operator 
1

𝜑(𝐷2)
 we find that  

 
1

𝜑(𝐷2)
𝜑(𝐷2) sin(𝑎𝑥 + 𝜃) =

1

𝜑(𝐷2)
𝜑(−𝑎2) sin(𝑎𝑥 + 𝜃) 

sin(𝑎𝑥 + 𝜃) = 𝜑(−𝑎2)
1

𝜑(𝐷2)
sin(𝑎𝑥 + 𝜃) 

 

Now if 𝜑(−𝑎2) ≠ 0 this can be interpreted as 

 
1

𝜑(𝐷2)
sin(𝑎𝑥 + 𝜃) =

1

𝜑(−𝑎2)
sin(𝑎𝑥 + 𝜃) 

 

This beautiful result then states a rule that an 𝑛𝑡ℎ order Non-Homogeneous Linear DE 
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with Constant coefficients 

        𝐿(𝐷2)𝑦 = 𝐴 sin(𝑎𝑥 + 𝜃) 

 has the 𝑃𝐼 

𝑦 = 𝐴
sin(𝑎𝑥 + 𝜃)

𝐿(−𝑎2)
  

which needs no integration to be performed. 

 

There may arise a situation where 𝐿(−𝑎2) = 0. This would then imply “−𝑎2” to be an 𝑟𝑡ℎ 

order root of the DE so that 

   𝐿(𝐷2) = (𝐷2 + 𝑎2)𝑟𝜑(𝐷2).  

The 𝐷𝐸 can then be written as      

 

𝜑(𝐷2)(𝐷2 + 𝑎2)𝑟𝑦 = 𝐴 sin(𝑎𝑥 + 𝜃) 

 

Operating on both sides by the “inverse” operator 
1

𝜑(𝐷2)
 we find 

 
1

𝜑(𝐷2)
𝜑(𝐷2)(𝐷2 + 𝑎2)𝑟𝑦 =

1

𝜑(𝐷2)
𝐴 sin(𝑎𝑥 + 𝜃) 

(𝐷2 + 𝑎2)𝑟𝑦 = 𝐴
sin(𝑎𝑥 + 𝜃)

𝜑(−𝑎2)
 

 

From our previously learnt technique this yields 

 

𝑦 =
𝐴

𝜑(−𝑎2)

1

(𝐷2 + 𝑎2)𝑟
sin(𝑎𝑥 + 𝜃) 

 

There may also arise a situation wherein the 𝐷𝐸 contains odd powers of 𝐷 too. This 

would then imply  

 

(𝑎𝑛𝐷𝑛 + 𝑎𝑛−1𝐷𝑛−1 + ⋯ + 𝑎4𝐷4 + 𝑎3𝐷3 + 𝑎2𝐷2 + 𝑎1𝐷 + 𝑎0) sin(𝑎𝑥 + 𝜃)

= [𝑎𝑛𝐷𝑛 + ⋯ + 𝑎4(−𝑎2)2 + 𝑎3𝐷3 + 𝑎2(−𝑎2) + 𝑎1𝐷 + 𝑎0] sin(𝑎𝑥 + 𝜃) 

 

𝐿(𝐷) sin(𝑎𝑥 + 𝜃) = 𝜑(𝐷) sin(𝑎𝑥 + 𝜃) 

 

Operating on both sides by the “inverse” operator 
1

𝜑(𝐷2)
 we find 

 
1

𝜑(𝐷2)
𝜑(𝐷2)(𝐷2 + 𝑎2)𝑟𝑦 =

1

𝜑(𝐷2)
𝐴 sin(𝑎𝑥 + 𝜃) 

(𝐷2 + 𝑎2)𝑟𝑦 = 𝐴
sin(𝑎𝑥 + 𝜃)

𝜑(−𝑎2)
 

 

From our previously learnt technique this yields 

 

𝑦 =
𝐴

𝜑(−𝑎2)

1

(𝐷2 + 𝑎2)𝑟
sin(𝑎𝑥 + 𝜃) 

 

Example 9.3.1 Solve the equation change 

 

𝒚′′ + 𝟒𝒚 = 𝐜𝐨𝐬 𝟑𝒙 
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Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦  

  

(𝐷2 + 4)𝑦 = cos 3𝑥 

𝐿(𝐷)𝑦 = cos 3𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE  

 

        𝐿(𝐷)𝑦 = 0  

will be obtained by writing 

          𝐿(𝜆) = 0   

𝜆2 + 4 = 0 

𝜆2 = −4 

 

The roots are then found as  

𝜆1 = +𝑖2 & 𝜆2 = −𝑖2 

 

The 𝐶𝐹 would be 𝐶1𝑒𝑖2𝑥 + 𝐶2𝑒−𝑖2𝑥 which can be represented as  

 

𝐶𝐹 = 𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
cos 3𝑥 

 

Since 𝑓(𝑥) = cos(𝑎𝑥) is an exponential function we will use the rule 
1

𝐿(𝐷2)
cos(𝑎𝑥) =

1

𝐿(−𝑎2)
cos(𝑎𝑥) to find the 𝑃𝐼 

𝑃𝐼 =
1

(𝐷2 + 4)
cos 3𝑥 

𝑃𝐼 =
cos 3𝑥

{(−32) + 4}
 

𝑃𝐼 =
cos 3𝑥

{−9 + 4}
 

𝑃𝐼 = −
1

5
cos 3𝑥 

 

Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥 −
1

5
cos 3𝑥 

 

 

Example 9.3.2 Solve the equation 

 

𝒚′′ + 𝟐𝒏 𝐜𝐨𝐬 𝜶 𝒚′ + 𝒏𝟐𝒚 = 𝐬𝐢𝐧 𝒏𝒙 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦  
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(𝐷2 + 2𝑛 cos 𝛼 𝐷 + 𝑛2)𝑦 = sin 𝑛𝑥 

𝐿(𝐷)𝑦 = sin 𝑛𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE  

 

        𝐿(𝐷)𝑦 = 0  

will be obtained by writing 

          𝐿(𝜆) = 0   

𝜆2 + 2𝑛 cos 𝛼 𝜆 + 𝑛2 = 0 

 

The roots are then found as 

𝜆1 =
−(2𝑛 cos 𝛼) + √(2𝑛 cos 𝛼)2 − 4(𝑛2)

2
 & 𝜆2 =

−(2𝑛 cos 𝛼) − √(2𝑛 cos 𝛼)2 − 4(𝑛2)

2
 

𝜆1 =
−(2𝑛 cos 𝛼) + 2𝑛√cos2 𝛼 − 1

2
 & 𝜆2 =

−(2𝑛 cos 𝛼) − 2𝑛√cos2 𝛼 − 1

2
 

𝜆1 = −𝑛 cos 𝛼 + 𝑖𝑛 sin 𝛼  & 𝜆2 = −𝑛 cos 𝛼 − 𝑖𝑛 sin 𝛼 

 

The 𝐶𝐹 would be 𝐶1𝑒(−𝑛 cos 𝛼+𝑖𝑛 sin 𝛼)𝑥 + 𝐶2𝑒(−𝑛 cos 𝛼−𝑖𝑛 sin 𝛼)𝑥 which can be represented as  

 

𝐶𝐹 = 𝑒−(𝑛 cos 𝛼)𝑥{𝐶1 cos[(𝑛 sin 𝛼)𝑥] + 𝐶2 sin[(𝑛 sin 𝛼)𝑥]} 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
sin 𝑛𝑥 =

1

(𝐷2 + 2𝑛 cos 𝛼 𝐷 + 𝑛2)
sin 𝑛𝑥 

𝑃𝐼 =
1

((−𝑛2) + 2𝑛 cos 𝛼 𝐷 + 𝑛2)
sin 𝑛𝑥 

𝑃𝐼 =
1

(2𝑛 cos 𝛼 𝐷)
sin 𝑛𝑥 

𝑃𝐼 =
1

(2𝑛 cos 𝛼)
∫ sin 𝑛𝑥 𝑑𝑥 

𝑃𝐼 =
1

(2𝑛2 cos 𝛼)
∫ sin 𝑛𝑥 𝑑(𝑛𝑥) 

𝑃𝐼 = −
cos 𝑛𝑥

(2𝑛2 cos 𝛼)
 

 

Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝑒−(𝑛 cos 𝛼)𝑥{𝐶1 cos[(𝑛 sin 𝛼)𝑥] + 𝐶2 sin[(𝑛 sin 𝛼)𝑥]} −
cos 𝑛𝑥

(2𝑛2 cos 𝛼)
 

 

 

 

9.4 When function 𝒇(𝒙) is of the form 𝒙𝒎, 𝒎 being a 

positive integer 
 

If 𝑓(𝑥) = 𝑥𝑚 then we can see that  

𝐷𝑥𝑚 = 𝑚𝑥𝑚−1 

𝐷2𝑥𝑚 = 𝐷(𝐷𝑥𝑚) = 𝐷(𝑚𝑥𝑚−1) = 𝑚(𝑚 − 1)𝑥𝑚−2 
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and so on 

𝐷𝑛𝑥𝑚 = 𝑚(𝑚 − 1)(𝑚 − 2) … (𝑚 − 𝑛 + 1)𝑥𝑚−𝑛 

 

So if 𝑛 = 𝑚 + 1 then 𝐷𝑛𝑥𝑚 = 0 and 𝐷𝑛𝑥𝑚 = 0 ∀ 𝑛 > 𝑚 + 1. With this in mind, to evaluate 
1

𝐿(𝐷)
𝑥𝑚 we do the following 

- Expand 
1

𝐿(𝐷)
 in ascending powers of 𝐷 as far as the term 𝐷𝑚 as we would do for 

any polynomial expression 

- Then operate on 𝑥𝑚 by the different powers of 𝐷 in the expression  

 

Example 9.4.1 Solve the equation 

 

𝒚′′ − 𝟓𝒚′ + 𝟔𝒚 = 𝒙 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦  

  

(𝐷2 − 5𝐷 + 6)𝑦 = 𝑥 

𝐿(𝐷)𝑦 = 𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 

 𝐿(𝐷)𝑦 = 0 will be obtained by writing 𝐿(𝜆) = 0   

𝜆2 − 5𝜆 + 6 = 0 

 

The roots are then found as  

𝜆1 =
−(−5) + √(−5)2 − 4(6)

2
 & 𝜆2 =

−(−5) − √(−5)2 − 4(6)

2
 

𝜆1 =
5 + 1

2
= 3 & 𝜆2 =

5 − 1

2
= 2 

 

The 𝐶𝐹 would be   

 

𝐶𝐹 = 𝐶1𝑒3𝑥 + 𝐶2𝑒2𝑥 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
𝑥 =

1

(𝐷2 − 5𝐷 + 6)
𝑥 

𝑃𝐼 =
1

6 (1 +
(𝐷2 − 5𝐷)

6
)

𝑥 =
1

6
(1 +

(𝐷2 − 5𝐷)

6
)

−1

𝑥 

 

Since 𝑓(𝑥) = 𝑥 is of power 1 we will expand only upto 1 power of 𝐷 (any higher power 

term will vanish as shown earlier)  

𝑃𝐼 =
1

6
(1 + (−1)

(𝐷2 − 5𝐷)

6
+ ⋯ ) 𝑥 =

1

6
(1 +

5𝐷

6
) 𝑥 

𝑃𝐼 =
1

6
(𝑥 +

5

6
) =

𝑥

6
+

5

36
 

 

Step 4 The General Solution would therefore be   
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𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1𝑒3𝑥 + 𝐶2𝑒2𝑥 +
𝑥

6
+

5

36
 

 

 

Example 9.4.2 Solve the equation 

 

𝒚′′ + 𝒚′ = 𝒙𝟑 + 𝟐𝒙𝟐 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦  

  

(𝐷2 + 𝐷)𝑦 = 𝑥3 + 2𝑥2 

𝐿(𝐷)𝑦 = 𝑥3 + 2𝑥2 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be 

obtained by writing 𝐿(𝜆) = 0   

𝜆2 + 𝜆 = 0 

𝜆(𝜆 + 1) = 0 

 

The roots are then found as  

 

𝜆1 = 0 & 𝜆2 = −1 

 

The 𝐶𝐹 would be   

 

𝐶𝐹 = 𝐶1𝑒0𝑥 + 𝐶2𝑒−𝑥 = 𝐶1 + 𝐶2𝑒−𝑥 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
(𝑥3 + 2𝑥2) =

1

(𝐷2 + 𝐷)
(𝑥3 + 2𝑥2) =

1

𝐷(𝐷 + 1)
(𝑥3 + 2𝑥2) =

1

𝐷
(1 + 𝐷)−1(𝑥3 + 2𝑥2) 

 

Since 𝑓(𝑥) = 𝑥3 + 2𝑥2 is of power 3 we will expand only upto 3 power of 𝐷 (any higher 

power term will vanish as shown earlier)  

𝑃𝐼 =
1

𝐷
(1 − 𝐷 + 𝐷2 − 𝐷3 + ⋯ )(𝑥3 + 2𝑥2) =

1

𝐷
(1 − 𝐷 + 𝐷2 − 𝐷3)(𝑥3 + 2𝑥2) 

𝑃𝐼 =
1

𝐷
((𝑥3 + 2𝑥2) − 𝐷(𝑥3 + 2𝑥2) + 𝐷2(𝑥3 + 2𝑥2) − 𝐷3(𝑥3 + 2𝑥2)) 

𝑃𝐼 =
1

𝐷
((𝑥3 + 2𝑥2) − (3𝑥2 + 4𝑥) + (6𝑥 + 4) − (6 + 0)) 

𝑃𝐼 =
1

𝐷
(𝑥3 + 2𝑥2 − 3𝑥2 + 6𝑥 − 4𝑥 + 4 − 6) =

1

𝐷
(𝑥3 − 𝑥2 + 2𝑥 − 2) 

𝑃𝐼 =
𝑥4

4
−

𝑥3

3
+ 𝑥2 − 2𝑥 

 

Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 + 𝐶2𝑒−𝑥 +
𝑥4

4
−

𝑥3

3
+ 𝑥2 − 2𝑥 
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Example 9.4.3 Solve the equation 

 

𝒚′′ + 𝒚′ − 𝟐𝒚 = 𝒙 + 𝐬𝐢𝐧 𝒙 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦  

  

(𝐷2 + 𝐷 − 2)𝑦 = 𝑥 + sin 𝑥 

𝐿(𝐷)𝑦 = 𝑥 + sin 𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be 

obtained by writing 𝐿(𝜆) = 0   

𝜆2 + 𝜆 − 2 = 0 

 

The roots are then found as  

𝜆1 =
−(1) + √(1)2 − 4(−2)

2
=

−1 + √9

2
 & 𝜆2 =

−(1) − √(1)2 − 4(−2)

2
=

−1 − √9

2
 

𝜆1 = 1 & 𝜆2 = −2 

 

The 𝐶𝐹 would be   

 

𝐶𝐹 = 𝐶1𝑒𝑥 + 𝐶2𝑒−2𝑥 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
(𝑥 + sin 𝑥) =

1

𝐿(𝐷)
𝑥 +

1

𝐿(𝐷)
sin 𝑥 

𝑃𝐼 =
1

(𝐷2 + 𝐷 − 2)
𝑥 +

1

(𝐷2 + 𝐷 − 2)
sin 𝑥 

 

Let’s first solve for 

 

𝑃𝐼1 =
1

(𝐷2 + 𝐷 − 2)
𝑥 = −

1

2 (1 −
(𝐷2 + 𝐷)

2
)

𝑥 = −
1

2
(1 −

(𝐷2 + 𝐷)

2
)

−1

𝑥 

  

Since 𝑓(𝑥) = 𝑥 is of power 1 we will expand only upto 1 power of 𝐷 (any higher power 

term will vanish as shown earlier)  

 

𝑃𝐼1 = −
1

2
(1 +

(𝐷2 + 𝐷)

2
) 𝑥 = −

1

2
(1 +

(𝐷2 + 𝐷)

2
) 𝑥 = −

1

2
(𝑥 +

1

2
) 

 

Now let’s solve for 

 

𝑃𝐼2 =
1

(𝐷2 + 𝐷 − 2)
sin 𝑥 =

1

((−12) + 𝐷 − 2)
sin 𝑥 =

1

(𝐷 − 3)
sin 𝑥 

  

𝑃𝐼2 =
(𝐷 + 3)

(𝐷 + 3)(𝐷 − 3)
sin 𝑥 =

(𝐷 + 3)

(𝐷2 − 9)
sin 𝑥 =

(𝐷 + 3)

((−12) − 9)
sin 𝑥 = −

(𝐷 + 3)

10
sin 𝑥 
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𝑃𝐼2 = −
1

10
(cos 𝑥 + 3 sin 𝑥) 

 

Thus, 

𝑃𝐼 = 𝑃𝐼1 + 𝑃𝐼2 = −
1

2
(𝑥 +

1

2
) −

1

10
(cos 𝑥 + 3 sin 𝑥) 

 

Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1𝑒𝑥 + 𝐶2𝑒−2𝑥 −
1

2
(𝑥 +

1

2
) −

1

10
(cos 𝑥 + 3 sin 𝑥) 

 

 

 

9.5 When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙𝑽(𝒙) 
 

If 𝑓(𝑥) = 𝑒𝑎𝑥𝑉(𝑥) then we can see that 

  

𝐷{𝑒𝑎𝑥𝑉(𝑥)} = {𝐷𝑒𝑎𝑥} 𝑉(𝑥) + 𝑒𝑎𝑥 {𝐷𝑉(𝑥)} = {𝑎𝑒𝑎𝑥} 𝑉(𝑥) + 𝑒𝑎𝑥 {𝐷𝑉(𝑥)} 

𝐷{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)𝑉(𝑥)} 

 

Writing 𝑉1(𝑥) = (𝐷 + 𝑎)𝑉(𝑥) we find that 

 

𝐷{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥𝑉1(𝑥) 

Therefore,  

𝐷2{𝑒𝑎𝑥𝑉(𝑥)} = 𝐷{𝐷{𝑒𝑎𝑥𝑉(𝑥)}} = 𝐷{𝑒𝑎𝑥𝑉1(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)𝑉1(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)(𝐷 + 𝑎)𝑉(𝑥)} 

𝐷2{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)2𝑉(𝑥)} 

 

This suggests that in general, 

𝐷𝑛{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥{(𝐷 + 𝑎)𝑛𝑉(𝑥)} 

 

So if 𝐿(𝐷) = 𝑎𝑛𝐷𝑛 + ⋯ + 𝑎2𝐷2 + 𝑎1𝐷 + 𝑎0 then 

 

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = (𝑎𝑛𝐷𝑛 + ⋯ + 𝑎2𝐷2 + 𝑎1𝐷 + 𝑎0){𝑒𝑎𝑥𝑉(𝑥)} 

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑎𝑛𝐷𝑛{𝑒𝑎𝑥𝑉(𝑥)} + ⋯ + 𝑎2𝐷2{𝑒𝑎𝑥𝑉(𝑥)} + 𝑎1𝐷{𝑒𝑎𝑥𝑉(𝑥)} + 𝑎0{𝑒𝑎𝑥𝑉(𝑥)} 

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑎𝑛𝑒𝑎𝑥{(𝐷 + 𝑎)𝑛𝑉(𝑥)} + ⋯ + 𝑎2𝑒𝑎𝑥{(𝐷 + 𝑎)2𝑉(𝑥)} + 𝑎1𝑒𝑎𝑥{(𝐷 + 𝑎)𝑉(𝑥)}

+ 𝑎0{𝑒𝑎𝑥𝑉(𝑥)} 

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥[𝑎𝑛(𝐷 + 𝑎)𝑛 + ⋯ + 𝑎2(𝐷 + 𝑎)2 + 𝑎1(𝐷 + 𝑎) + 𝑎0]𝑉(𝑥) 

 

𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥𝐿(𝐷 + 𝑎)𝑉(𝑥) 

 

Thus, operating on both sides by the “inverse” operator 
1

𝐿(𝐷)
 we find that  

 
1

𝐿(𝐷)
𝐿(𝐷){𝑒𝑎𝑥𝑉(𝑥)} =

1

𝐿(𝐷)
{𝑒𝑎𝑥𝐿(𝐷 + 𝑎)𝑉(𝑥)} 

𝑒𝑎𝑥𝑉(𝑥) =
1

𝐿(𝐷)
{𝑒𝑎𝑥𝐿(𝐷 + 𝑎)𝑉(𝑥)} 

 

Now if we write 𝑈(𝑥) = 𝐿(𝐷 + 𝑎)𝑉(𝑥) then this can be interpreted as 
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𝑒𝑎𝑥 {
1

𝐿(𝐷 + 𝑎)
𝑈(𝑥)} =

1

𝐿(𝐷)
{𝑒𝑎𝑥𝑈(𝑥)} 

 

This beautiful result then states a rule that an 𝑛𝑡ℎ order Non-Homogeneous Linear DE 

with Constant coefficients 𝐿(𝐷)𝑦 = 𝑒𝑎𝑥𝑉(𝑥) has the 𝑃𝐼 

𝑦 =
1

𝐿(𝐷)
{𝑒𝑎𝑥𝑉(𝑥)} = 𝑒𝑎𝑥 {

1

𝐿(𝐷 + 𝑎)
𝑉(𝑥)}  

which simplifies the procedure by taking out the exponential term and displacing the 𝐷 

operatorin 𝐿(𝐷) by ‘𝑎’. 

 

Example 9.5.1 Solve the equation 

 

𝒚′′ − 𝟐𝒚′ + 𝟓𝒚 = 𝒆𝟐𝒙 𝐬𝐢𝐧 𝒙 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦  

  

(𝐷2 − 2𝐷 + 5)𝑦 = 𝑒2𝑥 sin 𝑥 

𝐿(𝐷)𝑦 = 𝑒2𝑥 sin 𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be 

obtained by writing 𝐿(𝜆) = 0   

𝜆2 − 2𝜆 + 5 = 0 

 

The roots are then found as  

𝜆1 =
−(−2) + √(−2)2 − 4(5)

2
=

2 + √−16

2
 & 𝜆2 =

−(−2) + √(−2)2 − 4(5)

2
=

2 − √−16

2
 

𝜆1 = 1 + 𝑖2 & 𝜆2 = 1 − 𝑖2 

 

The 𝐶𝐹 would be 𝐶1𝑒(1+𝑖2)𝑥 + 𝐶2𝑒(1+𝑖2)𝑥 which can be represented as  

 

𝐶𝐹 = 𝑒𝑥{𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥} 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
𝑒2𝑥 sin 𝑥 = 𝑒2𝑥

1

𝐿(𝐷 + 2)
sin 𝑥 

𝑃𝐼 = 𝑒2𝑥
1

{(𝐷 + 2)2 − 2(𝐷 + 2) + 5}
sin 𝑥 = 𝑒2𝑥

1

{𝐷2 + 4 + 4𝐷 − 2𝐷 − 4 + 5}
sin 𝑥 

𝑃𝐼 = 𝑒2𝑥
1

{𝐷2 + 2𝐷 + 5}
sin 𝑥 

Now using the rule 
1

𝐿(𝐷2)
{sin(𝑎𝑥)} =

1

𝐿(−𝑎2)
{sin(𝑎𝑥)} we get 

𝑃𝐼 = 𝑒2𝑥
1

{(−12) + 2𝐷 + 5}
sin 𝑥 = 𝑒2𝑥

1

{2𝐷 + 4}
sin 𝑥 =

𝑒2𝑥

2

1

(𝐷 + 2)
sin 𝑥 

𝑃𝐼 =
𝑒2𝑥

2

(𝐷 − 2)

(𝐷 − 2)(𝐷 + 2)
sin 𝑥 =

𝑒2𝑥

2

(𝐷 − 2)

(𝐷2 − 4)
sin 𝑥 =

𝑒2𝑥

2

(𝐷 − 2)

((−12) − 4)
sin 𝑥 

𝑃𝐼 = −
𝑒2𝑥

10
(𝐷 − 2) sin 𝑥 = −

𝑒2𝑥

10
(cos 𝑥 − 2 sin 𝑥) 

𝑃𝐼 =
𝑒2𝑥

10
(2 sin 𝑥 − cos 𝑥) 
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Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝑒𝑥{𝐶1 cos 2𝑥 + 𝐶2 sin 2𝑥} +
𝑒2𝑥

10
(2 sin 𝑥 − cos 𝑥) 

 

 

Example 9.5.2 Solve the equation 

 

𝒚′′ + 𝜷𝟐𝒚 = 𝑨𝒆𝒊𝜶𝒙𝒙 

 

where 𝛼 & 𝛽 are constant real numbers. 

 

Solution:  

Step 1 The DE will be written with the D operator by replacing 𝑦′′ → 𝐷2𝑦 & 𝑦′ → 𝐷𝑦  

  

(𝐷2 + 𝛽2)𝑦 = 𝐴𝑒𝑖𝛼𝑥𝑥 

𝐿(𝐷)𝑦 = 𝐴𝑒𝑖𝛼𝑥𝑥 

 

Step 2 The Auxiliary Equation for the corresponding homogeneous DE 𝐿(𝐷)𝑦 = 0 will be 

obtained by writing 𝐿(𝜆) = 0   

𝜆2 + 𝛽2 = 0 

𝜆 = √−𝛽2 

 

The roots are then found as  

 

𝜆1 = 𝑖𝛽 & 𝜆2 = −𝑖𝛽 

 

The 𝐶𝐹 would be 𝐶1𝑒𝑖𝛽𝑥 + 𝐶2𝑒−𝑖𝛽𝑥 which can be represented as  

 

𝐶𝐹 = 𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥 

 

Step 3 The 𝑃𝐼 would now be obtained as   

 

𝑃𝐼 =
1

𝐿(𝐷)
𝐴𝑒𝑖𝛼𝑥𝑥 = 𝐴𝑒𝑖𝛼𝑥

1

𝐿(𝐷 + 𝑖𝛼)
𝑥 

𝑃𝐼 = 𝐴𝑒𝑖𝛼𝑥
1

{(𝐷 + 𝑖𝛼)2 + 𝛽2}
𝑥 = 𝐴𝑒𝑖𝛼𝑥

1

{𝐷2 + 2𝑖𝛼𝐷 − 𝛼2 + 𝛽2}
𝑥 

𝑃𝐼 = 𝐴𝑒𝑖𝛼𝑥
1

{𝐷2 + 2𝑖𝛼𝐷 + (𝛽2 − 𝛼2)}
𝑥 

 

Since 𝑓(𝑥) = 𝑥 is of power 1 we will expand only upto 1 power of 𝐷 (any higher power 

term will vanish as shown earlier) 

𝑃𝐼 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥

1

{1 +
2𝑖𝛼𝐷 + 𝐷2

(𝛽2 − 𝛼2)
}

𝑥 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {1 +

2𝑖𝛼𝐷 + 𝐷2

(𝛽2 − 𝛼2)
}

−1

𝑥 

𝑃𝐼 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {1 −

2𝑖𝛼𝐷

(𝛽2 − 𝛼2)
} 𝑥 

𝑃𝐼 =
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {𝑥 −

2𝑖𝛼

(𝛽2 − 𝛼2)
} 
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Step 4 The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥 +
𝐴

(𝛽2 − 𝛼2)
𝑒𝑖𝛼𝑥 {𝑥 −

2𝑖𝛼

(𝛽2 − 𝛼2)
} 

 

However if 𝛼 = 𝛽 then 

 

𝐶𝐹 = 𝐶1 cos 𝛼𝑥 + 𝐶2 sin 𝛼𝑥 

and form step 3 above 

𝑃𝐼 = 𝐴𝑒𝑖𝛼𝑥
1

{𝐷2 + 2𝑖𝛼𝐷}
𝑥 

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷

1

{1 +
𝐷2

2𝑖𝛼𝐷
}

𝑥 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷

1

{1 +
𝐷

2𝑖𝛼
}

𝑥 

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷
{1 +

𝐷

2𝑖𝛼
}

−1

𝑥 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷
{1 −

𝐷

2𝑖𝛼
} 𝑥 

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥

1

𝐷
{𝑥 −

1

2𝑖𝛼
} 

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥 ∫ {𝑥 −

1

2𝑖𝛼
} 𝑑𝑥 

𝑃𝐼 =
𝐴

2𝑖𝛼
𝑒𝑖𝛼𝑥 {

𝑥2

2
−

𝑥

2𝑖𝛼
} 

𝑃𝐼 =
𝐴

4𝛼2
𝑒𝑖𝛼𝑥 {

𝛼𝑥2

𝑖
+ 𝑥} 

The General Solution would therefore be   

 

𝑦 = 𝐶𝐹 + 𝑃𝐼 = 𝐶1 cos 𝛼𝑥 + 𝐶2 sin 𝛼𝑥 +
𝐴

4𝛼2
𝑒𝑖𝛼𝑥 {

𝛼𝑥2

𝑖
+ 𝑥} 

 

 

 

Summary 

Particular Integral of Special Forms of the Function 𝑓(𝑥) 

- There are certain special forms of the function 𝑓(𝑥) which admits rules for finding 

𝑃𝐼 of the Linear DE with constant coefficients in shorter steps. 

- When function 𝑓(𝑥) is of the form 𝑒𝑎𝑥 then the 𝑃𝐼 𝑦 = 𝐴
𝑒𝑎𝑥

𝐿(𝑎)
 

There may arise a situation where 𝐿(𝑎) = 0. This would then imply “𝑎” to be an 𝑟𝑡ℎ 

order root of the 𝑛𝑡ℎ order Non-Homogeneous Linear DE with Constant 

coefficients so that 𝐿(𝐷) = (𝐷 − 𝑎)𝑟𝜑(𝐷) then the PI 

𝑦 =
𝐴

𝜑(𝑎)

𝑥𝑟

𝑟!
𝑒𝑎𝑥 

- When function 𝑓(𝑥) is of the form 𝑠𝑖𝑛 𝑎𝑥 or 𝑐𝑜𝑠 𝑎𝑥 then the 𝑃𝐼 𝑦 = 𝐴
sin(𝑎𝑥+𝜃)

𝐿(−𝑎2)
 

There may arise a situation where 𝐿(−𝑎2) = 0. This would then imply “−𝑎2” to be 

an 𝑟𝑡ℎ order root of the DE so that 𝐿(𝐷2) = (𝐷2 + 𝑎2)𝑟𝜑(𝐷2) then the PI  

𝑦 =
𝐴

𝜑(−𝑎2)

1

(𝐷2 + 𝑎2)𝑟
sin(𝑎𝑥 + 𝜃) 

- When function 𝑓(𝑥) is of the form 𝑥𝑚, 𝑚 being a positive integer then the PI can be 

found by expanding 
𝟏

𝑳(𝑫)
 in ascending powers of 𝑫 as far as the term 𝑫𝒎 as we 
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would do for any polynomial expression and operating on 𝒙𝒎 by the different 

powers of 𝑫 in the expression  

- When function 𝒇(𝒙) is of the form 𝒆𝒂𝒙𝑽(𝒙) then the 𝑃𝐼 𝑦 = 𝑒𝑎𝑥 {
1

𝐿(𝐷+𝑎)
𝑉(𝑥)} 
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